Advertisement

Porous Ti-10Mo alloy fabricated by powder metallurgy for promoting bone regeneration

  • Wei Xu (徐伟)
  • Zhuo Liu (刘卓)
  • Xin Lu (路新)Email author
  • Jingjing Tian (田静静)
  • Gang Chen (陈刚)
  • Bowen Liu (刘博文)
  • Zhou Li (李舟)
  • Xuanhui Qu (曲选辉)
  • Cuie Wen (文翠娥)
Articles
  • 12 Downloads

Abstract

Porous Ti-10Mo alloys were fabricated by powder metallurgy using a space-holder method. The pore characteristics, microstructure, mechanical properties, in vitro biocompatibility, and in vivo osseointegration of the fabricated alloys were systematically investigated. The results show that with different weight ratios of the space-holder (NH4 HCO3) added, all of the porous Ti-10Mo alloys sintered at 1,300°C exhibited a typical Widmanstätten microstructure. The porosity and average pore size of the porous structures can be controlled in the range of 50.8%–66.9% and 70.1–381.4 μm, respectively. The Ti-10Mo alloy with 63.4% porosity exhibited the most suitable mechanical properties for implant applications with an elastic modulus of 2.9 GPa and a compressive yield strength of 127.5 MPa. In vitro, the alloyconditioned medium showed no deleterious effect on the cell proliferation. The cell viability in this medium was higher than that of the reference group, suggesting non-toxicity and good biological characteristics of the alloy specimens. In vivo, after eight weeks’ implantation, new bone tissue formed surrounding the alloy implants, and no noticeable inflammation was observed at the implantation site. The bone bonding strength of the porous Ti-10Mo alloy increased over time from 46.6 N at two weeks to 176.4 N at eight weeks. Suitable mechanical properties together with excellent biocompatibility in vitro and osteointegration in vivo make the porous Ti-10Mo fabricated by powder metallurgy an attractive orthopedic implant alloy.

Keywords

Porosity powder metallurgy structure characterization cell cytotoxicity osteointegration 

粉末冶金制备的多孔Ti-10Mo合金用于促进骨修复的研究

摘要

本文中, 我们以元素粉末为原料, 采用粉末冶金造孔剂法制备了多孔Ti-10Mo合金, 系统探讨了所制备的多孔Ti-10Mo合金的孔隙特 征、显微组织、力学性能、体外生物相容性及体内骨整合能力. 结果表明, 随着造孔剂含量的增加(碳酸氢铵),在1300°C下烧结的多孔Ti- 10Mo合金均由魏氏体组织组成. 所制备的Ti-10Mo合金的孔隙率与平均孔尺寸能够分别控制在50.8%–66.9%与70.1–381.4 μm. 孔隙率为 63.4%的Ti-10Mo合金具有最适合植入应用的力学性能, 其弹性模量为2.9 GPa, 抗压屈服强度为127.5 MPa. 在体外, Ti-10Mo合金浸提液 对细胞增殖没有不良影响. 细胞在浸提液中的存活率高于对照组, 表明合金无毒性并且具有良好的生物学特征. 在体内, 植入8周后合金周 围被新生骨包围, 并且植入部分未见明显炎症. 随着植入时间由2周增加到8周, 多孔Ti-10Mo合金的骨结合强度从46.6 N增加到176.4 N. 适 合的力学性能以及良好的体外生物相容性和体内骨整合性使粉末冶金法制备的多孔Ti-10Mo成为一种具有吸引力的骨科植入合金.

Notes

Acknowledgements

This work was supported by the Fundamental Research Funds for the Central Universities (FRF-GF-17-B39). Wen C acknowledges the financial support for this research by the National Health and Medical Research Council (NHMRC), Australia through project grant (GNT1087290).

Supplementary material

40843_2018_9394_MOESM1_ESM.pdf (5.5 mb)
Supporting Information for Porous Ti-10Mo alloy fabricated by powder metallurgy for promoting bone regeneration

References

  1. 1.
    Geetha M, Singh AK, Asokamani R, et al. Ti based biomaterials, the ultimate choice for orthopaedic implants—A review. Prog Mater Sci, 2009, 54: 397–425CrossRefGoogle Scholar
  2. 2.
    Long M, Rack HJ. Titanium alloys in total joint replacement—a materials science perspective. Biomaterials, 1998, 19: 1621–1639CrossRefGoogle Scholar
  3. 3.
    Banerjee D, Williams JC. Perspectives on titanium science and technology. Acta Mater, 2013, 61: 844–879CrossRefGoogle Scholar
  4. 4.
    Niinomi M, Nakai M, Hieda J. Development of new metallic alloys for biomedical applications. Acta Biomater, 2012, 8: 3888–3903CrossRefGoogle Scholar
  5. 5.
    Nune KC, Li S, Misra RDK. Advancements in three-dimensional titanium alloy mesh scaffolds fabricated by electron beam melting for biomedical devices: mechanical and biological aspects. Sci China Mater, 2018, 61: 455–474CrossRefGoogle Scholar
  6. 6.
    Aksakal B, Yildirim ÖS, Gul H. Metallurgical failure analysis of various implant materials used in orthopedic applications. J Fail Anal Preven, 2004, 4: 17–23CrossRefGoogle Scholar
  7. 7.
    Chang B, Song W, Han T, et al. Influence of pore size of porous titanium fabricated by vacuum diffusion bonding of titanium meshes on cell penetration and bone ingrowth. Acta Biomater, 2016, 33: 311–321CrossRefGoogle Scholar
  8. 8.
    Ho WF, Ju CP, Chern Lin JH. Structure and properties of cast binary Ti-Mo alloys. Biomaterials, 1999, 20: 2115–2122CrossRefGoogle Scholar
  9. 9.
    Zhao X, Niinomi M, Nakai M, et al. Beta type Ti-Mo alloys with changeable Young’s modulus for spinal fixation applications. Acta Biomater, 2012, 8: 1990–1997CrossRefGoogle Scholar
  10. 10.
    González JEG, Mirza-Rosca JC. Study of the corrosion behavior of titanium and some of its alloys for biomedical and dental implant applications. J Electroanal Chem, 1999, 471: 109–115CrossRefGoogle Scholar
  11. 11.
    Kumar S, Narayanan TSNS. Corrosion behaviour of Ti-15Mo alloy for dental implant applications. J Dentistry, 2008, 36: 500–507CrossRefGoogle Scholar
  12. 12.
    Yan M, Qian M, Kong C, et al. Impacts of trace carbon on the microstructure of as-sintered biomedical Ti-15Mo alloy and reassessment of the maximum carbon limit. Acta Biomater, 2014, 10: 1014–1023CrossRefGoogle Scholar
  13. 13.
    ATI 15MoTM Titanium alloy technical data sheet. ATI Allvac, Monroe, NCGoogle Scholar
  14. 14.
    Jablokov V, Nutt M, Richelsoph M, et al. The application of Ti-15Mo beta titanium alloy in high strength structural orthopaedic applications. J ASTM Int, 2005, 2: 13033CrossRefGoogle Scholar
  15. 15.
    Lin JH, Ju CP, Ho WF, inventors, J.H. Chern, assignee. Biocompatible low modulus titanium alloy for medical implant. United States patent, 6409852, 2002 Jun. 25Google Scholar
  16. 16.
    Disegi J. Wrought titanium-15% molybdenum implant material. SYNTHES® Instruments and Implants, Second Edition. 2009Google Scholar
  17. 17.
    Li Y, Wong C, Xiong J, et al. Cytotoxicity of titanium and titanium alloying elements. J Dent Res, 2010, 89: 493–497CrossRefGoogle Scholar
  18. 18.
    Zhou YL, Luo DM. Microstructures and mechanical properties of Ti-Mo alloys cold-rolled and heat treated. Mater Charact, 2011, 62: 931–937CrossRefGoogle Scholar
  19. 19.
    Cremasco A, Messias AD, Esposito AR, et al. Effects of alloying elements on the cytotoxic response of titanium alloys. Mater Sci Eng-C, 2011, 31: 833–839CrossRefGoogle Scholar
  20. 20.
    Lee EB, Han MK, Kim BJ, et al. Effect of molybdenum on the microstructure, mechanical properties and corrosion behavior of Ti alloys. Int J Mater Res, 2014, 105: 847–853CrossRefGoogle Scholar
  21. 21.
    Liu Y, Zheng Y, Hayes B. Degradable, absorbable or resorbable— what is the best grammatical modifier for an implant that is eventually absorbed by the body? Sci China Mater, 2017, 60: 377–391CrossRefGoogle Scholar
  22. 22.
    Wang X, Xu S, Zhou S, et al. Topological design and additive manufacturing of porous metals for bone scaffolds and orthopaedic implants: A review. Biomaterials, 2016, 83: 127–141CrossRefGoogle Scholar
  23. 23.
    Vandendolder J, Farber E, Spauwen P, et al. Bone tissue reconstruction using titanium fiber mesh combined with rat bone marrow stromal cells. Biomaterials, 2003, 24: 1745–1750CrossRefGoogle Scholar
  24. 24.
    Marin E, Fusi S, Pressacco M, et al. Characterization of cellular solids in Ti6Al4V for orthopaedic implant applications: Trabecular titanium. J Mech Behav BioMed Mater, 2010, 3: 373–381CrossRefGoogle Scholar
  25. 25.
    Zardiackas LD, Parsell DE, Dillon LD, et al. Structure, metallurgy, and mechanical properties of a porous tantalum foam. J Biomed Mater Res, 2001, 58: 180–187CrossRefGoogle Scholar
  26. 26.
    Gao Z, Li Q, He F, et al. Mechanical modulation and bioactive surface modification of porous Ti-10Mo alloy for bone implants. Mater Des, 2012, 42: 13–20CrossRefGoogle Scholar
  27. 27.
    Li S, Li X, Hou W, et al. Fabrication of open-cellular (porous) titanium alloy implants: osseointegration, vascularization and preliminary human trials. Sci China Mater, 2018, 61: 525–536CrossRefGoogle Scholar
  28. 28.
    Correa VL, Garza KM, Murr LE. Vascularization in interconnected 3D printed Ti-6Al-4V foams with hydrogel matrix for biomedical bone replacement implants. Sci China Mater, 2018, 61: 565–578CrossRefGoogle Scholar
  29. 29.
    Xie F, He X, Lu X, et al. Preparation and properties of porous Ti-10Mo alloy by selective laser sintering. Mater Sci Eng-C, 2013, 33: 1085–1090CrossRefGoogle Scholar
  30. 30.
    Xie F, He X, Lv Y, et al. Selective laser sintered porous Ti-(4–10) Mo alloys for biomedical applications: Structural characteristics, mechanical properties and corrosion behaviour. Corros Sci, 2015, 95: 117–124CrossRefGoogle Scholar
  31. 31.
    Xie FX, He XB, Cao SL, et al. Structural characterization and electrochemical behavior of a laser-sintered porous Ti-10Mo alloy. Corros Sci, 2013, 67: 217–224CrossRefGoogle Scholar
  32. 32.
    Wong KC, Scheinemann P. Additive manufactured metallic implants for orthopaedic applications. Sci China Mater, 2018, 61: 440–454CrossRefGoogle Scholar
  33. 33.
    Xu W, Lu X, Zhang B, et al. Effects of porosity on mechanical properties and corrosion resistances of PM-fabricated porous Ti- 10Mo alloy. Metals, 2018, 8: 188–201CrossRefGoogle Scholar
  34. 34.
    ISO 10993-5: 1999. Biological evaluation of medical devices-part 5: tests for cytotoxicity: in vitro methods. ANSI/AAMI, Arlington, VAGoogle Scholar
  35. 35.
    Wen CE, Yamada Y, Shimojima K, et al. Novel titanium foam for bone tissue engineering. J Mater Res, 2002, 17: 2633–2639CrossRefGoogle Scholar
  36. 36.
    Kawai N, Niwa S, Sato M, et al. Bone formation by cells from femurs cultured among three-dimensionally arranged hydroxyapatite granules. J Biomed Mater Res, 1997, 37: 1–8CrossRefGoogle Scholar
  37. 37.
    Krishna BV, Bose S, Bandyopadhyay A. Low stiffness porous Ti structures for load-bearing implants. Acta Biomater, 2007, 3: 997–1006CrossRefGoogle Scholar
  38. 38.
    Cameron HU, Pilliar RM, Macnab I. The rate of bone ingrowth into porous metal. J Biomed Mater Res, 1976, 10: 295–302CrossRefGoogle Scholar
  39. 39.
    Ryan GE, Pandit AS, Apatsidis DP. Porous titanium scaffolds fabricated using a rapid prototyping and powder metallurgy technique. Biomaterials, 2008, 29: 3625–3635CrossRefGoogle Scholar
  40. 40.
    Li Y, Wen C, Mushahary D, et al. Mg-Zr-Sr alloys as biodegradable implant materials. Acta Biomater, 2012, 8: 3177–3188CrossRefGoogle Scholar
  41. 41.
    Xu W, Li M, Wen C, et al. The mechanical properties and in vitro biocompatibility of PM-fabricated Ti-28Nb-35.4Zr alloy for orthopedic implant applications. Materials, 2018, 11: 531CrossRefGoogle Scholar
  42. 42.
    Oliveira NTC, Guastaldi AC. Electrochemical behavior of Ti-Mo alloys applied as biomaterial. Corros Sci, 2008, 50: 938–945CrossRefGoogle Scholar
  43. 43.
    Zhou YL, Luo DM. Corrosion behavior of Ti-Mo alloys cold rolled and heat treated. J Alloys Compd, 2011, 509: 6267–6272CrossRefGoogle Scholar
  44. 44.
    Chen J, Paetzell E, Zhou J, et al. Osteoblast-like cell ingrowth, adhesion and proliferation on porous Ti-6Al-4V with particulate and fiber scaffolds. Mater Sci Eng-C, 2010, 30: 647–656CrossRefGoogle Scholar
  45. 45.
    Xu W, Lu X, Wang LN, et al. Mechanical properties, in vitro corrosion resistance and biocompatibility of metal injection molded Ti-12Mo alloy for dental applications. J Mech Behav BioMed Mater, 2018, 88: 534–547CrossRefGoogle Scholar
  46. 46.
    Huang HH, Wu CP, Sun YS, et al. Surface nanoporosity of β-type Ti-25Nb-25Zr alloy for the enhancement of protein adsorption and cell response. Surf Coatings Tech, 2014, 259: 206–212CrossRefGoogle Scholar
  47. 47.
    Okazaki Y, Nishimura E, Nakada H, et al. Surface analysis of Ti-15Zr-4Nb-4Ta alloy after implantation in rat tibia. Biomaterials, 2001, 22: 599–607CrossRefGoogle Scholar
  48. 48.
    Lin DJ, Chuang CC, Chern Lin JH, et al. Bone formation at the surface of low modulus Ti-7.5Mo implants in rabbit femur. Biomaterials, 2007, 28: 2582–2589CrossRefGoogle Scholar
  49. 49.
    Majumdar P, Singh SB, Chakraborty M. The role of heat treatment on microstructure and mechanical properties of Ti-13Zr-13Nb alloy for biomedical load bearing applications. J Mech Behav BioMed Mater, 2011, 4: 1132–1144CrossRefGoogle Scholar
  50. 50.
    Muller D, Chim H, Bader A, et al. Vascular guidance: microstructural scaffold patterning for inductive neovascularization. Stem Cells Int, 2011, 2011: 1–6CrossRefGoogle Scholar
  51. 51.
    Bandyopadhyay A, Espana F, Balla VK, et al. Influence of porosity on mechanical properties and in vivo response of Ti6Al4V implants. Acta Biomater, 2010, 6: 1640–1648CrossRefGoogle Scholar
  52. 52.
    Caparrós C, Guillem-Martí J, Molmeneu M, et al. Mechanical properties and in vitro biological response to porous titanium alloys prepared for use in intervertebral implants. J Mech Behav BioMed Mater, 2014, 39: 79–86CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Wei Xu (徐伟)
    • 1
    • 3
  • Zhuo Liu (刘卓)
    • 2
  • Xin Lu (路新)
    • 1
    • 3
    Email author
  • Jingjing Tian (田静静)
    • 2
  • Gang Chen (陈刚)
    • 1
    • 3
  • Bowen Liu (刘博文)
    • 1
    • 3
  • Zhou Li (李舟)
    • 2
  • Xuanhui Qu (曲选辉)
    • 1
    • 3
  • Cuie Wen (文翠娥)
    • 4
  1. 1.Beijing Advanced Innovation Center for Materials Genome EngineeringUniversity of Science and Technology BeijingBeijingChina
  2. 2.CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and NanosystemsChinese Academy of SciencesBeijingChina
  3. 3.Beijing Advanced Innovation Center for Materials Genome Engineering, Institute for Advanced Materials and TechnologyUniversity of Science and Technology BeijingBeijingChina
  4. 4.School of EngineeringRMIT UniversityMelbourneAustralia

Personalised recommendations