Advertisement

Ba4M(CO3)2(BO3)2 (M=Ba, Sr): two borate-carbonates synthesized by open high temperature solution method

  • Xueyan Zhang (张雪艳)
  • Hongping Wu (吴红萍)
  • Hongwei Yu (俞洪伟)
  • Zhihua Yang (杨志华)
  • Shilie Pan (潘世烈)Email author
Articles
  • 9 Downloads

Abstract

Two borate-carbonates Ba4M(CO3)2(BO3)2 (M = Ba, Sr) have been successfully synthesized in the open air representing the first examples of borate-carbnate complex. Their structures were determined by single crystal X-ray diffraction and they both crystallize in same space group, Pnma. Their structures feature a Ba/Sr-based three dimensional framework composed of the BaO8 polyhedra (the SrO8 polyhedra), isolated BO3 and CO3 triangles. Detailed structure analysis shows that the intergrowth of [Ba3(BO3)2]/[Ba2Sr(BO3)2] and [BaCO3] layers favors the formation of these two borate-carbonates. In addition, their syntheses, spectroscopic properties and thermal behaviors were investigated.

Keywords

borate-carbonates open air intergrowth 

Ba4M(CO3)2(BO3)2 (M=Ba, Sr): 在开放体系下通过高温溶液法合成两种硼酸-碳酸盐

摘要

本文中, 我们成功合成了两种复合的硼酸-碳酸盐Ba4M(CO3)2(BO3)2 (M = Ba, Sr). 这是第一例在开放体系下合成的硼酸-碳酸盐. 它们的结构由单晶X射线衍射确定, 结晶在相同的Pnma空间群. 它们的晶体结构是由BaO8多面体(SrO8多面体), 孤立的BO3和CO3三角形组成的三维网络结构. 通过详细的结构分析表明共生长的[Ba3(BO3)2]/[Ba2Sr(BO3)2]和[BaCO3]层是有利于这两种硼酸-碳酸盐的合成的. 此外, 还研究了它们的合成、 光谱性质和热行为.

Notes

Acknowledgements

This work was supported by the Key Research Project of Frontier Science of CAS (QYZDB-SSW-JSC049), the Western Light Foundation of CAS (2016-QNXZ-A-2), Xinjiang International Science & Technology Cooperation Program (2017E01014).

Supplementary material

40843_2018_9390_MOESM1_ESM.pdf (646 kb)
Ba4M(CO3)2(BO3)2 (M = Ba, Sr): Two Borate-carbonates Synthesized by Open High Temperature Solution Method

References

  1. 1.
    Wang G, Peng Q, Li Y. Upconversion luminescence of monodisperse CaF2:Yb3+/Er3+ nanocrystals. J Am Chem Soc, 2009, 131: 14200–14201CrossRefGoogle Scholar
  2. 2.
    Nai J, Kang J, Guo L. Tailoring the shape of amorphous nanomaterials: recent developments and applications. Sci China Mater, 2015, 58: 44–59CrossRefGoogle Scholar
  3. 3.
    Yang X, Li Q, Hu G, et al. Controlled synthesis of high-quality crystals of monolayer MoS2 for nanoelectronic device application. Sci China Mater, 2016, 59: 182–190CrossRefGoogle Scholar
  4. 4.
    Wang Z, He C, Tang Z, et al. Crystal structure and superconductivity at about 30 K in ACa2Fe4As4F2 (A = Rb, Cs). Sci China Mater, 2017, 60: 83–89CrossRefGoogle Scholar
  5. 5.
    Hu M, Liu J, Zhao Q, et al. Organic single-crystal phototransistor with unique wavelength-detection characteristics. Sci China Mater, 2019, doi: 10.1007/s40843-018-9369-5Google Scholar
  6. 6.
    Yu J, Gao W, Liu F, et al. Tuning crystal structure and magnetic property of dispersible FePt intermetallic nanoparticles. Sci China Mater, 2018, 61: 961–968CrossRefGoogle Scholar
  7. 7.
    Wu Y, Wang D, Li Y. Understanding of the major reactions in solution synthesis of functional nanomaterials. Sci China Mater, 2016, 59: 938–996CrossRefGoogle Scholar
  8. 8.
    Zeng J, Zhou H, Liu R, et al. Combination of solution-phase process and halide exchange for all-inorganic, highly stable CsPbBr3 perovskite nanowire photodetector. Sci China Mater, 2019, 62: 65–73CrossRefGoogle Scholar
  9. 9.
    Xu D, Mu C, Wang B, et al. Fabrication of multifunctional carbon encapsulated Ni@NiO nanocomposites for oxygen reduction, oxygen evolution and lithium-ion battery anode materials. Sci China Mater, 2017, 60: 947–954CrossRefGoogle Scholar
  10. 10.
    Ok KM. Toward the rational design of novel noncentrosymmetric materials: factors influencing the framework structures. Acc Chem Res, 2016, 49: 2774–2785CrossRefGoogle Scholar
  11. 11.
    Gao W, Wang Y, Li G, et al. Synthesis and structure of an aluminum borate chloride consisting of 12-membered borate rings and aluminate clusters. Inorg Chem, 2008, 47: 7080–7082CrossRefGoogle Scholar
  12. 12.
    Mutailipu M, Zhang M, Wu H, et al. Ba3Mg3(BO3)3F3 polymorphs with reversible phase transition and high performances as ultraviolet nonlinear optical materials. Nat Commun, 2018, 9: 3089–3098CrossRefGoogle Scholar
  13. 13.
    Kang L, Lin Z, Qin J, et al. Two novel nonlinear optical carbonates in the deep-ultraviolet region: KBeCO3F and RbAlCO3F2. Sci Rep, 2013, 3: 1366–1371CrossRefGoogle Scholar
  14. 14.
    Wang S, Ye N. Na2CsBe6B5O15: an alkaline beryllium borate as a deep-UV nonlinear optical crystal. J Am Chem Soc, 2011, 133: 11458–11461CrossRefGoogle Scholar
  15. 15.
    Kong F, Huang SP, Sun ZM, et al. Se2(B2O7): a new type of secondorder NLO material. J Am Chem Soc, 2006, 128: 7750–7751CrossRefGoogle Scholar
  16. 16.
    Li L, Li G, Wang Y, et al. Bismuth borates: one-dimensional borate chains and nonlinear optical properties. Chem Mater, 2005, 17: 4174–4180CrossRefGoogle Scholar
  17. 17.
    Xia Z, Poeppelmeier KR. Chemistry-inspired adaptable framework structures. Acc Chem Res, 2017, 50: 1222–1230CrossRefGoogle Scholar
  18. 18.
    Ok KM, Chi EO, Halasyamani PS. Bulk characterization methods for non-centrosymmetric materials: second-harmonic generation, piezoelectricity, pyroelectricity, and ferroelectricity. Chem Soc Rev, 2006, 35: 710–717CrossRefGoogle Scholar
  19. 19.
    Li RK, Ma Y. Chemical engineering of a birefringent crystal transparent in the deep UV range. CrystEngComm, 2012, 14: 5421–5424CrossRefGoogle Scholar
  20. 20.
    Solntsev VP, Tsvetkov EG, Gets VA, et al. Growth of a-BaB2O4 single crystals from melts at various compositions: comparison of optical properties. J Cryst Growth, 2002, 236: 290–296CrossRefGoogle Scholar
  21. 21.
    Luo M, Song Y, Liang F, et al. Pb2BO3Br: a novel nonlinear optical lead borate bromine with a KBBF-type structure exhibiting strong nonlinear optical response. Inorg Chem Front, 2018, 5: 916–921CrossRefGoogle Scholar
  22. 22.
    Tran TT, Yu H, Rondinelli JM, et al. Deep ultraviolet nonlinear optical materials. Chem Mater, 2016, 28: 5238–5258CrossRefGoogle Scholar
  23. 23.
    Ewald B, Huang YX, Kniep R. Structural chemistry of borophosphates, metalloborophosphates, and related compounds. Z Anorg Allg Chem, 2007, 633: 1517–1540CrossRefGoogle Scholar
  24. 24.
    Yaghoobnejad Asl H, Morris R, Tran TT, et al. A cubic noncentrosymmetric mixed-valence iron borophosphate–phosphite. Cryst Growth Des, 2016, 16: 1187–1194CrossRefGoogle Scholar
  25. 25.
    Yu H, Zhang W, Young J, et al. Design and synthesis of the beryllium-free deep-ultraviolet nonlinear optical material Ba3(ZnB5 O10)PO4. Adv Mater, 2015, 27: 7380–7385CrossRefGoogle Scholar
  26. 26.
    Boy I, Stowasser F, Schäfer G, et al. NaZn(H2O)2[BP2O8]·H2O: a novel open-framework borophosphate and its reversible dehydration to microporous sodium zincoborophosphate Na[ZnBP2O8] ·H2O with CZP topology. Chem-Eur J, 2001, 7: 834–839CrossRefGoogle Scholar
  27. 27.
    Xu X, Hu CL, Kong F, et al. Ca10Ge16B6O51 and Cd12Ge17B8O58: two types of new 3D frameworks based on BO4 tetrahedra and 1D [Ge4O12]n chains. Inorg Chem, 2011, 50: 8861–8868CrossRefGoogle Scholar
  28. 28.
    Kong F, Jiang HL, Hu T, et al. CsB3GeO7 and K2B2Ge3O10: explorations of new second-order nonlinear optical materials in the borogermanate systems. Inorg Chem, 2008, 47: 10611–10617CrossRefGoogle Scholar
  29. 29.
    Xu X, Hu CL, Kong F, et al. Cs2GeB4O9: a new second-order nonlinear-optical crystal. Inorg Chem, 2013, 52: 5831–5837CrossRefGoogle Scholar
  30. 30.
    Wang Y, Zhang B, Yang Z, et al. Cation-tuned synthesis of fluorooxoborates: towards optimal deep-ultraviolet nonlinear optical materials. Angew Chem Int Ed, 2018, 57: 2150–2154CrossRefGoogle Scholar
  31. 31.
    Mutailipu M, Zhang M, Zhang B, et al. SrB5O7F3 functionalized with [B5O9F3]6- chromophores: accelerating the rational design of deep-ultraviolet nonlinear optical materials. Angew Chem Int Ed, 2018, 57: 6095–6099CrossRefGoogle Scholar
  32. 32.
    Shi G, Wang Y, Zhang F, et al. Finding the next deep-ultraviolet nonlinear optical material: NH4B4O6F. J Am Chem Soc, 2017, 139: 10645–10648CrossRefGoogle Scholar
  33. 33.
    Wang X, Wang Y, Zhang B, et al. CsB4O6F: a congruent-melting deep-ultraviolet nonlinear optical material by combining superior functional units. Angew Chem Int Ed, 2017, 56: 14119–14123CrossRefGoogle Scholar
  34. 34.
    Zhang Z, Wang Y, Zhang B, et al. Polar Fluorooxoborate, NaB4O6F: a promising material for ionic conduction and nonlinear optics. Angew Chem Int Ed, 2018, 57: 6577–6581CrossRefGoogle Scholar
  35. 35.
    Han G, Wang Y, Zhang B, et al. Fluorooxoborates: ushering in a new era of deep ultraviolet nonlinear optical materials. Chem Eur J, 2018, 24: 17638–17650CrossRefGoogle Scholar
  36. 36.
    Chen Y, An D, Zhang M, et al. Li6Zn3(BO3)4: a new zincoborate featuring vertex-, edge- and face-sharing LiO4 tetrahedra and exhibiting reversible phase transitions. Inorg Chem Front, 2017, 4: 1100–1107CrossRefGoogle Scholar
  37. 37.
    Zou G, Lin C, Jo H, et al. Pb2BO3Cl: a tailor-made polar lead borate chloride with very strong second harmonic generation. Angew Chem Int Ed, 2016, 55: 12078–12082CrossRefGoogle Scholar
  38. 38.
    Zou G, Huang L, Ye N, et al. CsPbCO3F: a strong second-harmonic generation material derived from enhancement via p-π interaction. J Am Chem Soc, 2013, 135: 18560–18566CrossRefGoogle Scholar
  39. 39.
    Tran TT, Halasyamani PS, Rondinelli JM. Role of acentric displacements on the crystal structure and second-harmonic generating properties of RbPbCO3F and CsPbCO3F. Inorg Chem, 2014, 53: 6241–6251CrossRefGoogle Scholar
  40. 40.
    Song JL, Hu CL, Xu X, et al. A facile synthetic route to a new SHG material with two types of parallel π-conjugated planar triangular units. Angew Chem Int Ed, 2015, 54: 3679–3682CrossRefGoogle Scholar
  41. 41.
    Kinase W, Tanaka M, Nomura H. Birefringence of CaCO3 and electronic polarizabilities of the constituent ions. J Phys Soc Jpn, 1979, 47: 1375–1376CrossRefGoogle Scholar
  42. 42.
    Zou G, Ye N, Huang L, et al. Alkaline-alkaline earth fluoride carbonate crystals ABCO3F (A = K, Rb, Cs; B = Ca, Sr, Ba) as nonlinear optical materials. J Am Chem Soc, 2011, 133: 20001–20007CrossRefGoogle Scholar
  43. 43.
    Uehara M, Nakata H, Akimitsu J. Superconductivity in the new compound Sr2CuO2(CO3)1-x(BO3)x. Phys C, 1993, 216: 453–457CrossRefGoogle Scholar
  44. 44.
    Yakubovich OV, Simonov AM, Belov NV. Accurate definition of gaudefroyite Ca4Mn3 3+O3(BO3)3(CO3) crystal structure. Kristallogr, 1975, 20: 152–155Google Scholar
  45. 45.
    Zhao J, Li RK. Ba2(BO3)1-x(CO3)xCl1+x: a mixed borate and carbonate chloride crystallized from high-temperature solution. Inorg Chem, 2012, 51: 4568–4571CrossRefGoogle Scholar
  46. 46.
    Pauling L. The principles determining the structure of complex ionic crystals. J Am Chem Soc, 1929, 51: 1010–1026CrossRefGoogle Scholar
  47. 47.
    Wu H, Pan S, Poeppelmeier KR, et al. K3B6O10Cl: a new structure analogous to perovskite with a large second harmonic generation response and deep UV absorption edge. J Am Chem Soc, 2011, 133: 7786–7790CrossRefGoogle Scholar
  48. 48.
    Wu H, Yu H, Yang Z, et al. Designing a deep-ultraviolet nonlinear optical material with a large second harmonic generation response. J Am Chem Soc, 2013, 135: 4215–4218CrossRefGoogle Scholar
  49. 49.
    Yu H, Wu H, Jing Q, et al. Polar polymorphism: a-, ß-, and γ-Pb2Ba4Zn4B14O31—synthesis, characterization, and nonlinear optical properties. Chem Mater, 2015, 27: 4779–4788CrossRefGoogle Scholar
  50. 50.
    SAINT, version 760A, Bruker Analytical X-ray Instruments, Inc., Madison, WI, 2008Google Scholar
  51. 51.
    Sheldrick GM. SHELXTL, version 614, Bruker Analytical Xray Instruments, Inc., Madison, WI, 2003Google Scholar
  52. 52.
    Spek AL. Single-crystal structure validation with the program PLATON. J Appl Crystlogr, 2003, 36: 7–13CrossRefGoogle Scholar
  53. 53.
    Tauc J. Absorption edge and internal electric fields in amorphous semiconductors. Mater Res Bull, 1970, 5: 721–729CrossRefGoogle Scholar
  54. 54.
    Kubelka P, Munk FZ. An article on optics of paint layers. Tech Phys, 1931, 12: 593–608Google Scholar
  55. 55.
    Segall MD, Lindan PJD, Probert MJ, et al. First-principles simulation: ideas, illustrations and the CASTEP code. J Phys-Condens Matter, 2002, 14: 2717–2744CrossRefGoogle Scholar
  56. 56.
    Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett, 1996, 77: 3865–3868CrossRefGoogle Scholar
  57. 57.
    Lin JS, Qteish A, Payne MC, et al. Optimized and transferable nonlocal separable ab initio pseudopotentials. Phys Rev B, 1993, 47: 4174–4180CrossRefGoogle Scholar
  58. 58.
    Held PLJ, Bohaty, L. Crystal structure of dibarium pentaborate chloride, Ba2B5O9Cl. Z Kristallogr NCS, 2002, 217: 463–464Google Scholar
  59. 59.
    Egorova BV, Olenev AV, Berdonosov PS, et al. Lead–strontium borate halides with hilgardite-type structure and their SHG properties. J Solid State Chem, 2008, 181: 1891–1898CrossRefGoogle Scholar
  60. 60.
    Yu H, Wu H, Pan S, et al. A novel deep UV nonlinear optical crystal Ba3B6O11F2, with a new fundamental building block, B6O14 group. J Mater Chem, 2012, 22: 9665–9670CrossRefGoogle Scholar
  61. 61.
    McMillen CD, Stritzinger JT, Kolis JW. Two novel acentric borate fluorides: M3B6O11F2 (M = Sr, Ba). Inorg Chem, 2012, 51: 3953–3955CrossRefGoogle Scholar
  62. 62.
    Mutailipu M, Su X, Zhang M, et al. Ban+2Znn(BO3)n(B2O5)Fn (n = 1, 2): new members of the zincoborate fluoride series with two kinds of isolated B–O units. Inorg Chem Front, 2016, 4: 281–288CrossRefGoogle Scholar
  63. 63.
    Pan X, Wu H, Wen M, et al. Flexible coordination of Pb atoms and variable zinc–borate frameworks to construct three Pb5Zn4B6O18 polymorphs. Inorg Chem Front, 2018, 5: 2501–2507CrossRefGoogle Scholar
  64. 64.
    Qiao J, Ning L, Molokeev MS, et al. Eu2+ site preferences in the mixed cation K2BaCa(PO4)2 and thermally stable luminescence. J Am Chem Soc, 2018, 140: 9730–9736CrossRefGoogle Scholar
  65. 65.
    Wu QS, Liu JW, Wang GS, et al. A surfactant-free route to synthesize BaxSr1-xTiO3 nanoparticles at room temperature, their dielectric and microwave absorption properties. Sci China Mater, 2016, 59: 609–617CrossRefGoogle Scholar
  66. 66.
    Solov’eva LP, Bakakin VV. Crystal structure of borakite Ca4Mg (B4O6(OH)6)(CO3)2. Dokl Akad Nauk SSSR, 1968, 180: 1453–1456Google Scholar
  67. 67.
    Yakubovich OV, Egorov Tismenko YK, Simonov MA, et al. Crystal structure of natural sacchite Ca3Mg[BO3]2[CO3]0.36H2O. Dokl Akad Nauk SSSR, 1978, 239: 1103–1106Google Scholar
  68. 68.
    Yang GM, Liu XW, Ma ZS, et al. Determination of the crystal structure of sakhaite. Acta Geol Sin, 2004, 78: 190–194Google Scholar
  69. 69.
    Frost RL, Xi Y. Assessment of the molecular structure of the borate mineral sakhaite Ca12Mg4(BO3)7(CO3)4Cl(OH)2·H2O using vibrational spectroscopy. Spectrochim Acta Part A, 2012, 96: 611–616CrossRefGoogle Scholar
  70. 70.
    Abudoureheman M, Wang L, Zhang X, et al. Pb7O(OH)3(CO3)3-(BO3): first mixed borate and carbonate nonlinear optical material exhibiting large second-harmonic generation response. Inorg Chem, 2015, 54: 4138–4142CrossRefGoogle Scholar
  71. 71.
    Antao SM, Hassan I. Gaudefroyite, Ca8Mn3+ 6[(BO3)6(CO3)2O6]: high-temperature crystal structure. Can Mineral, 2008, 46: 183–193CrossRefGoogle Scholar
  72. 72.
    Heyward C, McMillen CD, Kolis J. Hydrothermal synthesis and structural analysis of new mixed oxyanion borates: Ba11B26O44-(PO4)2(OH)6, Li9BaB15O27(CO3) and Ba3Si2B6O16. J Solid State Chem, 2013, 203: 166–173CrossRefGoogle Scholar
  73. 73.
    Hull S, Norberg ST, Ahmed I, et al. High temperature crystal structures and superionic properties of SrCl2, SrBr2, BaCl2 and BaBr2. J Solid State Chem, 2011, 184: 2925–2935CrossRefGoogle Scholar
  74. 74.
    Liu L, Yang Y, Dong X, et al. Design and syntheses of three novel carbonate halides: Cs3Pb2(CO3)3I, KBa2(CO3)2F, and RbBa2(CO3)2F. Chem Eur J, 2016, 22: 2944–2954CrossRefGoogle Scholar
  75. 75.
    Sham LJ, Schlüter M. Density-functional theory of the energy gap. Phys Rev Lett, 1983, 51: 1888–1891CrossRefGoogle Scholar
  76. 76.
    Cohen AJ, Mori-Sánchez P, Yang W. Fractional charge perspective on the band gap in density-functional theory. Phys Rev B, 2008, 77: 115123–115129CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Xueyan Zhang (张雪艳)
    • 1
    • 2
  • Hongping Wu (吴红萍)
    • 1
    • 2
  • Hongwei Yu (俞洪伟)
    • 1
    • 2
  • Zhihua Yang (杨志华)
    • 1
    • 2
  • Shilie Pan (潘世烈)
    • 1
    • 2
    Email author
  1. 1.CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics & ChemistryCASUrumqiChina
  2. 2.Xinjiang Key Laboratory of Electronic Information Materials and DevicesUrumqiChina

Personalised recommendations