Advertisement

Enhancing back interfacial contact by in-situ prepared MoO3 thin layer for Cu2ZnSnSxSe4-x solar cells

  • Xue Min
  • Linbao Guo
  • Qing Yu
  • Biwen Duan
  • Jiangjian Shi
  • Huijue Wu
  • Yanhong Luo
  • Dongmei Li
  • Qingbo Meng
Articles
  • 105 Downloads

Abstract

In-situ prepared MoO3 thin layer has been introduced to suppress the formation of too thick Mo(S,Se)2 layer in Cu2ZnSnSxSe4-x (CZTSSe) solar cells. This MoO3 layer effectively improves the back interfacial contact between CZTSSe absorber layer and Mo substrate without poisoning the carrier transport. Up to 10.58% power conversion efficiency has been achieved.

Keywords

Cu2ZnSnSxSe4-x solar cells MoO3 blocking layer insitu preparation back interfacial contact carrier transport 

原位制备MoO3薄膜提高铜锌锡硫硒太阳能电池背界面接触性能

Abstract

在空气中对钼基底进行退火处理, 在钼表面形成MoO3薄层. 该MoO3薄膜能有效抑制过厚Mo(S,Se)2的形成. 研究发现, MoO3厚度随 着温度的升高而增大, 其中350°C形成的MoO3厚度最为合适, 既能够有效降低Mo(S,Se)2的厚度, 又不影响吸收层和钼电极接触, 器件最高 效率达到10.58%. 这种方法不会引入其他杂质元素, 操作简单方便.

Notes

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (91733301, 51761145042, 51627803, 21501183, 51402348, 11474333, 91433205 and 51421002), the Knowledge Innovation Program and the Strategic Priority Research Program (Grant XDB 12010400) of the Chinese Academy of Sciences.

References

  1. 1.
    Zhou H, Hsu WC, Duan HS, et al. CZTS nanocrystals: a promising approach for next generation thin film photovoltaics. Energy Environ Sci, 2013, 6: 2822–2838CrossRefGoogle Scholar
  2. 2.
    Polizzotti A, Repins IL, Noufi R, et al. The state and future prospects of kesterite photovoltaics. Energy Environ Sci, 2013, 6: 3171–3182CrossRefGoogle Scholar
  3. 3.
    Chen S, Walsh A, Gong XG, et al. Classification of lattice defects in the kesterite Cu2ZnSnS4 and Cu2ZnSnSe4 earth-abundant solar cell absorbers. Adv Mater, 2013, 25: 1522–1539CrossRefGoogle Scholar
  4. 4.
    Kumar M, Dubey A, Adhikari N, et al. Strategic review of secondary phases, defects and defect-complexes in kesterite CZTS–Se solar cells. Energy Environ Sci, 2015, 8: 3134–3159CrossRefGoogle Scholar
  5. 5.
    Li J, Wang D, Li X, et al. Cation substitution in earth-abundant kesterite photovoltaic materials. Adv Sci, 2018, 5: 1700744CrossRefGoogle Scholar
  6. 6.
    Yan C, Huang J, Sun K, et al. Cu2ZnSnS4 solar cells with over 10% power conversion efficiency enabled by heterojunction heat treatment. Nat Energy, 2018, 3: 764–772CrossRefGoogle Scholar
  7. 7.
    Shin B, Bojarczuk NA, Guha S. On the kinetics of MoSe2 interfacial layer formation in chalcogen-based thin film solar cells with a molybdenum back contact. Appl Phys Lett, 2013, 102: 091907CrossRefGoogle Scholar
  8. 8.
    Yang KJ, Sim JH, Jeon B, et al. Effects of Na and MoS2 on Cu2ZnSnS4 thin-film solar cell. Prog Photovolt-Res Appl, 2015, 23: 862–873CrossRefGoogle Scholar
  9. 9.
    Scragg JJ, Wätjen JT, Edoff M, et al. A detrimental reaction at the molybdenum back contact in Cu2ZnSn(S,Se)4 thin-film solar cells. J Am Chem Soc, 2012, 134: 19330–19333CrossRefGoogle Scholar
  10. 10.
    Li J, Zhang Y, Zhao W, et al. A temporary barrier effect of the alloy layer during selenization: tailoring the thickness of MoSe2 for efficient Cu2ZnSnSe4 solar cells. Adv Energy Mater, 2015, 5: 1402178CrossRefGoogle Scholar
  11. 11.
    Shin B, Zhu Y, Bojarczuk NA, et al. Control of an interfacial MoSe2 layer in Cu2ZnSnSe4 thin film solar cells: 8.9% power conversion efficiency with a TiN diffusion barrier. Appl Phys Lett, 2012, 101: 053903CrossRefGoogle Scholar
  12. 12.
    Liu F, Sun K, Li W, et al. Enhancing the Cu2ZnSnS4 solar cell efficiency by back contact modification: Inserting a thin TiB2 intermediate layer at Cu2ZnSnS4/Mo interface. Appl Phys Lett, 2014, 104: 051105CrossRefGoogle Scholar
  13. 13.
    Li W, Han X, Zhao Y, et al. Pre-annealing induced oxide barrier to suppress the over-selenization of Mo contact. J Mater Sci-Mater Electron, 2016, 27: 11188–11191CrossRefGoogle Scholar
  14. 14.
    Chernova NA, Roppolo M, Dillon AC, et al. Layered vanadium and molybdenum oxides: batteries and electrochromics. J Mater Chem, 2009, 19: 2526–2552CrossRefGoogle Scholar
  15. 15.
    Ding QP, Huang HB, Duan JH, et al. Molybdenum trioxide nanostructures prepared by thermal oxidization of molybdenum. J Cryst Growth, 2006, 294: 304–308CrossRefGoogle Scholar
  16. 16.
    Kröger M, Hamwi S, Meyer J, et al. P-type doping of organic wide band gap materials by transition metal oxides: a case-study on molybdenum trioxide. Org Electron, 2009, 10: 932–938CrossRefGoogle Scholar
  17. 17.
    Tian Q, Wang G, Zhao W, et al. Versatile and low-toxic solution approach to binary, ternary, and quaternary metal sulfide thin films and its application in Cu2ZnSn(S,Se)4 solar cells. Chem Mater, 2014, 26: 3098–3103CrossRefGoogle Scholar
  18. 18.
    Min X, Shi J, Guo L, et al. Regulation of Zn/Sn ratio in kesterite absorbers to boost 10% efficiency of Cu2ZnSn(S,Se)4 solar cells. Chin Phys B, 2018, 27: 016402CrossRefGoogle Scholar
  19. 19.
    Haass SG, Diethelm M, Werner M, et al. 11.2% Efficient solution processed kesterite solar cell with a low voltage deficit. Adv Energy Mater, 2015, 5: 1500712CrossRefGoogle Scholar
  20. 20.
    Shin D, Saparov B, Mitzi DB. Defect engineering in multinary earth-abundant chalcogenide photovoltaic materials. Adv Energy Mater, 2017, 7: 1602366CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Xue Min
    • 1
    • 3
  • Linbao Guo
    • 1
    • 3
  • Qing Yu
    • 1
    • 3
  • Biwen Duan
    • 1
    • 3
  • Jiangjian Shi
    • 1
  • Huijue Wu
    • 1
  • Yanhong Luo
    • 1
    • 3
    • 4
  • Dongmei Li
    • 1
    • 3
    • 4
  • Qingbo Meng
    • 1
    • 2
    • 4
  1. 1.Key Laboratory for Renewable Energy (CAS), Beijing Key Laboratory for New Energy Materials and Devices, Beijing National Laboratory for Condense Matter Physics, Institute of PhysicsChinese Academy of Sciences (CAS)BeijingChina
  2. 2.Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijingChina
  3. 3.School of Physical SciencesUniversity of Chinese Academy of SciencesBeijingChina
  4. 4.Songshan Lake Materials LaboratoryDongguanChina

Personalised recommendations