Advertisement

Chemical vapor infiltration of pyrocarbon from methane pyrolysis: kinetic modeling with texture formation

  • Chunxia Hu (胡春霞)
  • Hejun Li (李贺军)Email author
  • Shouyang Zhang (张守阳)
  • Wei Li (李伟)
  • Ni Li (李霓)Email author
Articles
  • 43 Downloads

Abstract

A complete mechanism of methane pyrolysis is proposed for chemical vapor infiltration of pyrocarbon with different textures, which contains a detailed homogeneous mechanism for gas reactions and a lumped heterogeneous mechanism for pyrocarbon deposition. This model is easily applied to simulate gas compositions and pyrocarbon deposition in a vertical hot-wall flow reactor in the temperature range of 1,323–1,398 K without any adjusting parameters and presents better results than previous mechanisms. Results have shown that the consumption of methane and the production of hydrogen are well enhanced due to pyrocarbon deposition. Pyrocarbon deposition prevents the continuously increasing of acetylene composition and leads to the reduction in the mole fraction of benzene at long residence times in the gas phase. The carbon growth with active sites on the surface is the controlling mechanism of pyrocarbon deposition. C1 species is the precursor of pyrocarbon deposition at 1,323 K, and the primary source over the whole temperature range. As temperature increases, gas phase becomes more mature and depositions from acetylene, benzene and polyaromatic hydrocarbons become more prevalent. A general pyrocarbon formation mechanism is derived with the specific precursors and illustrates that the maturation of gas compositions is beneficial to forming planar structures with hexagonal rings or pentagon-heptagon pairs, namely, high textured pyrocarbon. The results are in well agreement with experiments.

Keywords

kinetic modeling pyrolytic carbon texture chemical vapor infiltration methane 

甲烷化学气相沉积不同织构热解碳的动力学分析

摘要

本文建立了一种甲烷化学气相沉积不同织构热解碳的动力学模型. 该模型包括甲烷气相热解的详细基元反应及热解碳沉积的集总 表面反应, 模拟了1323–1398 K立式热壁反应炉中热解碳沉积过程中不同气体的组分浓度及热解碳的沉积速率, 且模拟结果优于已有报道 的模型、与实验结果吻合良好. 结果表明, 热解碳的主要沉积机理为碳源气体在表面活性位的生长机理, 其中C1物质为主要碳源气体. 随 着温度升高, 甲烷热解混合气体趋于成熟, 乙炔、苯和多环芳香烃逐渐成为重要的碳源气体. 基于以上碳源气体的热解碳形成机理分析指 出热解混合气体的成熟有利于形成由六元环及五元环-七元环组合而成的高定向平面结构, 即高织构热解碳, 与实验结论吻合良好.

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (51521061 and 51472203), the “111” Project (B08040), and the Research Fund of State Key Laboratory of Solidification Processing (NWPU), China (142-TZ-2016).

Supplementary material

40843_2018_9379_MOESM1_ESM.pdf (5.6 mb)
Chemical vapor infiltration of pyrocarbon from methane pyrolysis: kinetic modeling with texture formation

References

  1. 1.
    Wang C, Murugadoss V, Kong J, et al. Overview of carbon nanostructures and nanocomposites for electromagnetic wave shielding. Carbon, 2018, 140: 696–733CrossRefGoogle Scholar
  2. 2.
    Li K, Zhang J. Recent advances in flexible supercapacitors based on carbon nanotubes and graphene. Sci China Mater, 2018, 61: 210–232CrossRefGoogle Scholar
  3. 3.
    Chen Y, Shi J. Mesoporous carbon biomaterials. Sci China Mater, 2015, 58: 241–257CrossRefGoogle Scholar
  4. 4.
    Chowdhury P, Sehitoglu H, Rateick R. Damage tolerance of carbon-carbon composites in aerospace application. Carbon, 2018, 126: 382–393CrossRefGoogle Scholar
  5. 5.
    Mikociak D, Blazewicz S, Michalowski J. Biological and mechanical properties of nanohydroxyapatite-containing carbon/carbon composites. Int J Appl Ceram Technol, 2012, 9: 468–478CrossRefGoogle Scholar
  6. 6.
    Cao S, Li H, Lu J, et al. Unique cytological behavior of MC3T3-E1 osteoblasts on H2O2-modified C/C composites in vitro. Sci China Mater, 2017, 60: 361–367CrossRefGoogle Scholar
  7. 7.
    Jia Y, Li K, Xue L, et al. Mechanical and electromagnetic shielding performance of carbon fiber reinforced multilayered (PyC-SiC)n matrix composites. Carbon, 2017, 111: 299–308CrossRefGoogle Scholar
  8. 8.
    Liu X, Yin X, Kong L, et al. Fabrication and electromagnetic interference shielding effectiveness of carbon nanotube reinforced carbon fiber/pyrolytic carbon composites. Carbon, 2014, 68: 501–510CrossRefGoogle Scholar
  9. 9.
    Reznik B, Hüttinger KJ. On the terminology for pyrolytic carbon. Carbon, 2002, 40: 621–624CrossRefGoogle Scholar
  10. 10.
    Benzinger W, Hüttinger KJ. Chemistry and kinetics of chemical vapor infiltration of pyrocarbon-IV. Investigation of methane/hy-drogen mixtures. Carbon, 1999, 37: 931–940Google Scholar
  11. 11.
    Zhang WG, Hu ZJ, Hüttinger KJ. Chemical vapor infiltration of carbon fiber felt: optimization of densification and carbon microstructure. Carbon, 2002, 40: 2529–2545CrossRefGoogle Scholar
  12. 12.
    Hu ZJ, Zhang WG, Hüttinger KJ, et al. Influence of pressure, temperature and surface area/volume ratio on the texture of pyrolytic carbon deposited from methane. Carbon, 2003, 41: 749–758CrossRefGoogle Scholar
  13. 13.
    Dong GL, Hüttinger KJ. Consideration of reaction mechanisms leading to pyrolytic carbon of different textures. Carbon, 2002, 40: 2515–2528CrossRefGoogle Scholar
  14. 14.
    Norinaga K, Deutschmann O, Hüttinger KJ. Analysis of gas phase compounds in chemical vapor deposition of carbon from light hydrocarbons. Carbon, 2006, 44: 1790–1800CrossRefGoogle Scholar
  15. 15.
    Norinaga K, Deutschmann O. Detailed kinetic modeling of gasphase reactions in the chemical vapor deposition of carbon from light hydrocarbons. Ind Eng Chem Res, 2007, 46: 3547–3557CrossRefGoogle Scholar
  16. 16.
    Devin-Ziegler I, Fournet R, Marquaire PM. Pyrolysis of propane for CVI of pyrocarbon: Part I. Experimental and modeling study of the formation of toluene and aliphatic species. J Anal Appl Pyrolysis, 2005, 73: 212–230Google Scholar
  17. 17.
    Devin-Ziegler I, Fournet R, Marquaire PM. Pyrolysis of propane for CVI of pyrocarbon: Part II. Experimental and modeling study of polyaromatic species. J Anal Appl Pyrolysis, 2005, 73: 231–247CrossRefGoogle Scholar
  18. 18.
    Devin-Ziegler I, Fournet R, Marquaire PM. Pyrolysis of propane for CVI of pyrocarbon: Part III: Experimental and modeling study of the formation of pyrocarbon. J Anal Appl Pyrolysis, 2007, 79: 268–277CrossRefGoogle Scholar
  19. 19.
    Benzinger W, Hüttinger KJ. Chemical vapour infiltration of pyrocarbon: I. Some kinetic considerations. Carbon, 1996, 34: 1465–1471Google Scholar
  20. 20.
    Becker A, Hüttinger KJ. Chemistry and kinetics of chemical vapor deposition of pyrocarbon—IV Pyrocarbon deposition from methane in the low temperature regime. Carbon, 1998, 36: 213–224CrossRefGoogle Scholar
  21. 21.
    Becker A, Hüttinger KJ. Chemistry and kinetics of chemical vapor deposition of pyrocarbon—V Influence of reactor volume/deposition surface area ratio. Carbon, 1998, 36: 225–232CrossRefGoogle Scholar
  22. 22.
    Brüggert M, Hu Z, Hüttinger KJ. Chemistry and kinetics of chemical vapor deposition of pyrocarbon: VI. Influence of temperature using methane as a carbon source. Carbon, 1999, 37: 2021–2030Google Scholar
  23. 23.
    Becker A, Hüttinger KJ. Chemistry and kinetics of chemical vapor deposition of pyrocarbon—II Pyrocarbon deposition from ethylene, acetylene and 1,3-butadiene in the low temperature regime. Carbon, 1998, 36: 177–199CrossRefGoogle Scholar
  24. 24.
    Hu C, Li H, Zhang S, et al. A molecular-level analysis of gas-phase reactions in chemical vapor deposition of carbon from methane using a detailed kinetic model. J Mater Sci, 2016, 51: 3897–3906CrossRefGoogle Scholar
  25. 25.
    Becker A, Hüttinger KJ. Chemistry and kinetics of chemical vapor deposition of pyrocarbon—III Pyrocarbon deposition from propylene and benzene in the low temperature regime. Carbon, 1998, 36: 201–211CrossRefGoogle Scholar
  26. 26.
    Hidaka Y, Nakamura T, Tanaka H, et al. Shock tube and modeling study of propene pyrolysis. Int J Chem Kinet, 1992, 24: 761–780CrossRefGoogle Scholar
  27. 27.
    Tsang W. Chemical kinetic data base for combustion chemistry Part V. Propene. J Phys Chem Reference Data, 1991, 20: 221–273CrossRefGoogle Scholar
  28. 28.
    Marinov NM, Pitz WJ, Westbrook CK, et al. Modeling of aromatic and polycyclic aromatic hydrocarbon formation in premixed methane and ethane flames. Combust Sci Tech, 1996, 116–117: 211–287Google Scholar
  29. 29.
    Richter H, Howard JB. Formation and consumption of single-ring aromatic hydrocarbons and their precursors in premixed acetylene, ethylene and benzene flames. Phys Chem Chem Phys, 2002, 4: 2038–2055CrossRefGoogle Scholar
  30. 30.
    Norinaga K, Deutschmann O, Saegusa N, et al. Analysis of pyrolysis products from light hydrocarbons and kinetic modeling for growth of polycyclic aromatic hydrocarbons with detailed chemistry. J Anal Appl Pyrolysis, 2009, 86: 148–160CrossRefGoogle Scholar
  31. 31.
    Gilbert RG, Luther K, Troe J. Theory of thermal unimolecular reactions in the fall-off range. II. Weak collision rate constants. Berichte der Bunsengesellschaft für physikalische Chem, 1983, 87: 169–177CrossRefGoogle Scholar
  32. 32.
    Qu Y, Su K, Wang X, et al. Reaction pathways of propene pyrolysis. J Comput Chem, 2010, 34: NAGoogle Scholar
  33. 33.
    Hu Z, Hüttinger KJ. Chemistry and kinetics of chemical vapor deposition of pyrocarbon: VIII. Carbon deposition from methane at low pressures. Carbon, 2001, 39: 433–441Google Scholar
  34. 34.
    Frenklach M, Wang H. Detailed surface and gas-phase chemical kinetics of diamond deposition. Phys Rev B, 1991, 43: 1520–1545CrossRefGoogle Scholar
  35. 35.
    Lacroix R, Fournet R, Ziegler-Devin I, et al. Kinetic modeling of surface reactions involved in CVI of pyrocarbon obtained by propane pyrolysis. Carbon, 2010, 48: 132–144CrossRefGoogle Scholar
  36. 36.
    Tang ZP, Li AJ, Zhang ZW, et al. Chemistry and kinetics of heterogeneous reaction mechanism for chemical vapor infiltration of pyrolytic carbon from propane. Ind Eng Chem Res, 2014, 53: 17537–17546CrossRefGoogle Scholar
  37. 37.
    Li S, Petzold L. Software and algorithms for sensitivity analysis of large-scale differential algebraic systems. J Comput Appl Math, 2000, 125: 131–145CrossRefGoogle Scholar
  38. 38.
    Li A, Deutschmann O. Transient modeling of chemical vapor infiltration of methane using multi-step reaction and deposition models. Chem Eng Sci, 2007, 62: 4976–4982CrossRefGoogle Scholar
  39. 39.
    Manion JA, Huie RE, Levin RD, et al. NIST Chemical Kinetics Database. Available from URL: http://kinetics.nist.gov/Google Scholar
  40. 40.
    Hu ZJ, Hüttinger KJ. Mechanisms of carbon deposition—a kinetic approach. Carbon, 2002, 40: 624–628CrossRefGoogle Scholar
  41. 41.
    Farbos B, Weisbecker P, Fischer HE, et al. Nanoscale structure and texture of highly anisotropic pyrocarbons revisited with transmission electron microscopy, image processing, neutron diffraction and atomistic modeling. Carbon, 2014, 80: 472–489CrossRefGoogle Scholar
  42. 42.
    Leyssale JM, Da Costa JP, Germain C, et al. Structural features of pyrocarbon atomistic models constructed from transmission electron microscopy images. Carbon, 2012, 50: 4388–4400CrossRefGoogle Scholar
  43. 43.
    He K, Robertson AW, Lee S, et al. Extended Klein edges in graphene. ACS Nano, 2014, 8: 12272–12279CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Chunxia Hu (胡春霞)
    • 1
  • Hejun Li (李贺军)
    • 1
    Email author
  • Shouyang Zhang (张守阳)
    • 1
  • Wei Li (李伟)
    • 1
  • Ni Li (李霓)
    • 2
    Email author
  1. 1.State Key Laboratory of Solidification Processing, C/C Composites Research CenterNorthwestern Polytechnical UniversityXi’anChina
  2. 2.Department of Mechanical EngineeringCalifornia State UniversityLos AngelesUSA

Personalised recommendations