A thiol-amine mixture for metal oxide towards device quality metal chalcogenides

  • Tong Zhang (张童)
  • Lijian Zhang (张立建)
  • Yiwei Yin (尹奕炜)
  • Chenhui Jiang (江晨辉)
  • Shi’ang Li (李诗昂)
  • Changfei Zhu (朱长飞)Email author
  • Tao Chen (陈涛)Email author



利用分子前驱体溶液制备金属硫属化物薄膜在器件领域具有广泛的应用前景. 本文利用巯基乙醇和乙醇胺这种新型硫醇/胺溶剂, 溶解很多价格便宜的金属氧化物和氢氧化物, 如Cu2O, ZnO, SnO, In(OH)3, GeO2, Cd(OH)2, MnO, PbO, Bi2O3, Sb2O3. 通过添加硫脲和硒粉作为硫源和硒源后可以制得相应的二元金属硫化物、 硒化物. 此方法还可用来制备纯物相的带隙可调的三元CuSbSe2−xSx和四元Cu2 ZnSnSe4. 我们用这种方法合成的Sb2S3平面异质结太阳电池光电转化效率可高达到4.39%. 这项研究提供了一种制备二元、 三元、 四元器件级金属硫属化物薄膜的普适性方法.



This work was supported by the Fundamental Research Funds for the Central Universities (WK2060140023, WK2060140022, CX3430000001 and WK2060140024), the Major/Innovative Program of Development Foundation of Hefei Center for Physical Science and Technology (2016FXZY003), and the National Natural Science Foundation of China (GG2060140085 and CX2310000097).

Supplementary material

40843_2018_9376_MOESM1_ESM.pdf (3.4 mb)
A thiol-amine mixture for metal oxide towards device quality metal chalcogenides


  1. 1.
    Wang H, Liang Y, Li Y, et al. Co1−xS-graphene hybrid: a high-performance metal chalcogenide electrocatalyst for oxygen reduction. Angew Chem Int Ed, 2011, 50: 10969–10972CrossRefGoogle Scholar
  2. 2.
    Zhang R, Cho S, Lim DG, et al. Metal–metal chalcogenide molecular precursors to binary, ternary, and quaternary metal chalcogenide thin films for electronic devices. Chem Commun, 2016, 52: 5007–5010CrossRefGoogle Scholar
  3. 3.
    Wang RY, Feser JP, Gu X, et al. Universal and solution-processable precursor to bismuth chalcogenide thermoelectrics. Chem Mater, 2010, 22: 1943–1945CrossRefGoogle Scholar
  4. 4.
    Bottner H, Nurnus J, Gavrikov A, et al. New thermoelectric components using microsystem technologies. J Microelectromech Syst, 2004, 13: 414–420CrossRefGoogle Scholar
  5. 5.
    Milliron DJ, Raoux S, Shelby RM, et al. Solution-phase deposition and nanopatterning of GeSbSe phase-change materials. Nat Mater, 2007, 6: 352–356CrossRefGoogle Scholar
  6. 6.
    Ohta T. Phase-change optical memory promotes the dvd optical disk. J Optoelectron Adv Mater, 2001, 3: 609–626Google Scholar
  7. 7.
    Ohta T. Quick-set thin films. Nature, 2004, 428: 269–271CrossRefGoogle Scholar
  8. 8.
    Milliron DJ, Mitzi DB, Copel M, et al. Solution-processed metal chalcogenide films for p-type transistors. Chem Mater, 2006, 18: 587–590CrossRefGoogle Scholar
  9. 9.
    Choi YC, Lee YH, Im SH, et al. Efficient inorganic-organic heterojunction solar cells employing Sb2(Sx/Se1−x)3 graded-composition sensitizers. Adv Energy Mater, 2014, 4: 1301680CrossRefGoogle Scholar
  10. 10.
    Bag S, Gunawan O, Gokmen T, et al. Low band gap liquidprocessed CZTSe solar cell with 10.1% efficiency. Energy Environ Sci, 2012, 5: 7060–7065CrossRefGoogle Scholar
  11. 11.
    Mitzi DB, Gunawan O, Todorov TK, et al. The path towards a high-performance solution-processed kesterite solar cell. Sol Energy Mater Sol Cells, 2011, 95: 1421–1436CrossRefGoogle Scholar
  12. 12.
    Todorov TK, Reuter KB, Mitzi DB. high-efficiency solar cell with earth-abundant liquid-processed absorber. Adv Mater, 2010, 22: E156–E159CrossRefGoogle Scholar
  13. 13.
    Kronik L, Cahen D, Schock HW. Effects of sodium on polycrystalline Cu(In,Ga)Se2 and its solar cell performance. Adv Mater, 1998, 10: 31–36CrossRefGoogle Scholar
  14. 14.
    Zhang R, Szczepaniak SM, Carter NJ, et al. A versatile solution route to efficient Cu2ZnSn(S,Se)4 thin-film solar cells. Chem Mater, 2015, 27: 2114–2120CrossRefGoogle Scholar
  15. 15.
    Zhao D, Tian Q, Zhou Z, et al. Solution-deposited pure selenide CIGSe solar cells from elemental Cu, In, Ga, and Se. J Mater Chem A, 2015, 3: 19263–19267CrossRefGoogle Scholar
  16. 16.
    Zhao X, Lu M, Koeper MJ, et al. Solution-processed sulfur depleted Cu(In, Ga)Se2 solar cells synthesized from a monoamine–dithiol solvent mixture. J Mater Chem A, 2016, 4: 7390–7397CrossRefGoogle Scholar
  17. 17.
    Graetzel M, Janssen RAJ, Mitzi DB, et al. Materials interface engineering for solution-processed photovoltaics. Nature, 2012, 488: 304–312CrossRefGoogle Scholar
  18. 18.
    Sun Y, Welch GC, Leong WL, et al. Solution-processed smallmolecule solar cells with 6.7% efficiency. Nat Mater, 2012, 11: 44–48CrossRefGoogle Scholar
  19. 19.
    Xiao Z, Bi C, Shao Y, et al. Efficient, high yield perovskite photovoltaic devices grown by interdiffusion of solution-processed precursor stacking layers. Energy Environ Sci, 2014, 7: 2619–2623CrossRefGoogle Scholar
  20. 20.
    Mitzi DB, Kosbar LL, Murray CE, et al. High-mobility ultrathin semiconducting films prepared by spin coating. Nature, 2004, 428: 299–303CrossRefGoogle Scholar
  21. 21.
    Mitzi DB. Solution processing of chalcogenide semiconductors via dimensional reduction. Adv Mater, 2009, 21: 3141–3158CrossRefGoogle Scholar
  22. 22.
    Yuan M, Mitzi DB. Solvent properties of hydrazine in the preparation of metal chalcogenide bulk materials and films. Dalton Trans, 2009, 13: 6078CrossRefGoogle Scholar
  23. 23.
    Mitzi DB. Solution-processed inorganic semiconductors. J Mater Chem, 2004, 14: 2355–2365CrossRefGoogle Scholar
  24. 24.
    Mitzi DB, Yuan M, Liu W, et al. A high-efficiency solutiondeposited thin-film photovoltaic device. Adv Mater, 2008, 20: 3657–3662CrossRefGoogle Scholar
  25. 25.
    Todorov TK, Gunawan O, Gokmen T, et al. Solution-processed Cu (In,Ga)(S,Se)2 absorber yielding a 15.2% efficient solar cell. Prog Photovolt-Res Appl, 2013, 21: 82–87CrossRefGoogle Scholar
  26. 26.
    Webber DH, Brutchey RL. Alkahest for V2VI3 chalcogenides: dissolution of nine bulk semiconductors in a diamine-dithiol solvent mixture. J Am Chem Soc, 2013, 135: 15722–15725CrossRefGoogle Scholar
  27. 27.
    Webber DH, Buckley JJ, Antunez PD, et al. Facile dissolution of selenium and tellurium in a thiol–amine solvent mixture under ambient conditions. Chem Sci, 2014, 5: 2498–2502CrossRefGoogle Scholar
  28. 28.
    McCarthy CL, Webber DH, Schueller EC, et al. Solution-phase conversion of bulk metal oxides to metal chalcogenides using a simple thiol-amine solvent mixture. Angew Chem Int Ed, 2015, 54: 8378–8381CrossRefGoogle Scholar
  29. 29.
    Tian Q, Wang G, Zhao W, et al. Versatile and low-toxic solution approach to binary, ternary, and quaternary metal sulfide thin films and its application in Cu2ZnSn(S,Se)4 solar cells. Chem Mater, 2014, 26: 3098–3103CrossRefGoogle Scholar
  30. 30.
    Wang G, Wang S, Cui Y, et al. A novel and versatile strategy to prepare metal–organic molecular precursor solutions and its application in Cu(In,Ga)(S,Se)2 solar cells. Chem Mater, 2012, 24: 3993–3997CrossRefGoogle Scholar
  31. 31.
    Yang Y, Wang G, Zhao W, et al. Solution-processed highly efficient Cu2ZnSnSe4 thin film solar cells by dissolution of elemental Cu, Zn, Sn, and Se powders. ACS Appl Mater Interfaces, 2015, 7: 460–464CrossRefGoogle Scholar
  32. 32.
    Choi YC, Seok SI. Efficient Sb2S3-sensitized solar cells via singlestep deposition of Sb2S3 using S/Sb-ratio-controlled SbCl3-thiourea complex solution. Adv Funct Mater, 2015, 25: 2892–2898CrossRefGoogle Scholar
  33. 33.
    Kumar M, Persson C. CuSbS2 and CuBiS2 as potential absorber materials for thin-film solar cells. J Renew Sustain Energy, 2013, 5: 031616CrossRefGoogle Scholar
  34. 34.
    Xue DJ, Yang B, Yuan ZK, et al. CuSbSe2 as a potential photovoltaic absorber material: studies from theory to experiment. Adv Energy Mater, 2015, 5: 1501203CrossRefGoogle Scholar
  35. 35.
    Choi YC, Yeom EJ, Ahn TK, et al. CuSbS2-sensitized inorganicorganic heterojunction solar cells fabricated using a metal-thiourea complex solution. Angew Chem Int Ed, 2015, 54: 4005–4009CrossRefGoogle Scholar
  36. 36.
    Ladd MFC. Symmetry of crystals and molecules. Oxford: Oxford University Press, 2014CrossRefGoogle Scholar
  37. 37.
    McCarthy CL, Cottingham P, Abuyen K, et al. Earth abundant CuSbS2 thin films solution processed from thiol–amine mixtures. J Mater Chem C, 2016, 4: 6230–6233CrossRefGoogle Scholar
  38. 38.
    Azimi H, Hou Y, Brabec CJ. Towards low-cost, environmentally friendly printed chalcopyrite and kesterite solar cells. Energy Environ Sci, 2014, 7: 1829–1849CrossRefGoogle Scholar
  39. 39.
    Polizzotti A, Repins IL, Noufi R, et al. The state and future prospects of kesterite photovoltaics. Energy Environ Sci, 2013, 6: 3171–3182CrossRefGoogle Scholar
  40. 40.
    Zhou H, Hsu WC, Duan HS, et al. CZTS nanocrystals: A promising approach for next generation thin film photovoltaics. Energy Environ Sci, 2013, 6: 2822–2838CrossRefGoogle Scholar
  41. 41.
    Redinger A, Hönes K, Fontané X, et al. Detection of a ZnSe secondary phase in coevaporated Cu2ZnSnSe4 thin films. Appl Phys Lett, 2011, 98: 101907CrossRefGoogle Scholar
  42. 42.
    Altosaar M, Raudoja J, Timmo K, et al. Cu2Zn1−xCdxSn(Se1−ySy)4 solid solutions as absorber materials for solar cells. Phys Stat Sol (a), 2008, 205: 167–170CrossRefGoogle Scholar
  43. 43.
    Shavel A, Arbiol J, Cabot A. Synthesis of quaternary chalcogenide nanocrystals: stannite Cu2ZnxSnySe1+x+2y. J Am Chem Soc, 2010, 132: 4514–4515CrossRefGoogle Scholar
  44. 44.
    Wang G, Zhao W, Cui Y, et al. Fabrication of a Cu2ZnSn(S,Se)4 photovoltaic device by a low-toxicity ethanol solution process. ACS Appl Mater Interfaces, 2013, 5: 10042–10047CrossRefGoogle Scholar
  45. 45.
    Shaji S, Garcia LV, Loredo SL, et al. Antimony sulfide thin films prepared by laser assisted chemical bath deposition. Appl Surf Sci, 2017, 393: 369–376CrossRefGoogle Scholar
  46. 46.
    Medles M, Benramdane N, Bouzidi A, et al. Raman and optical studies of spray pyrolysed Sb2S3 thin films. J Optoelectron Adv Mater, 2014, 16: 726–731Google Scholar
  47. 47.
    Haiges R, Vij A, Boatz JA, et al. First structural characterization of binary As(III) and Sb(III) azides. Chem Eur J, 2004, 10: 508–517CrossRefGoogle Scholar
  48. 48.
    Buckley JJ, McCarthy CL, Del Pilar-Albaladejo J, et al. Dissolution of Sn, SnO, and SnS in a thiol–amine solvent mixture: insights into the identity of the molecular solutes for solution-processed SnS. Inorg Chem, 2016, 55: 3175–3180CrossRefGoogle Scholar
  49. 49.
    Tian Q, Cui Y, Wang G, et al. A robust and low-cost strategy to prepare Cu2ZnSnS4 precursor solution and its application in Cu2ZnSn(S,Se)4 solar cells. RSC Adv, 2015, 5: 4184–4190CrossRefGoogle Scholar
  50. 50.
    Poborchii VV, Kolobov AV, Caro J, et al. Polarized Raman spectra of selenium species confined in nanochannels of AlPO4 single crystals. Chem Phys Lett, 1997, 280: 17–23CrossRefGoogle Scholar
  51. 51.
    Eysel HH, Sunder S. Homonuclear bonds in sulfur-selenium mixed crystals: A Raman spectroscopic study. Inorg Chem, 1979, 18: 2626–2627CrossRefGoogle Scholar
  52. 52.
    Zhang Y, Li J, Jiang G, et al. Selenium-graded Sb2(S1−xSex)3 for planar heterojunction solar cell delivering a certified power conversion efficiency of 5.71%. Sol RRL, 2017, 1: 1700017CrossRefGoogle Scholar
  53. 53.
    Wang X, Li J, Liu W, et al. A fast chemical approach towards Sb2S3 film with a large grain size for high-performance planar heterojunction solar cells. Nanoscale, 2017, 9: 3386–3390CrossRefGoogle Scholar
  54. 54.
    Kondrotas R, Chen C, Tang J. Sb2S3 solar cells. Joule, 2018, 2: 857–878CrossRefGoogle Scholar
  55. 55.
    Choi YC, Lee DU, Noh JH, et al. Highly improved Sb2S3 sensitized-inorganic-organic heterojunction solar cells and quantification of traps by deep-level transient spectroscopy. Adv Funct Mater, 2014, 24: 3587–3592CrossRefGoogle Scholar
  56. 56.
    Wang X, Tang R, Wu C, et al. Development of antimony sulfide–selenide Sb2(S, Se)3-based solar cells. J Energy Chem, 2018, 27: 713–721CrossRefGoogle Scholar
  57. 57.
    Zhou Y, Leng M, Xia Z, et al. Solution-processed antimony selenide heterojunction solar cells. Adv Energy Mater, 2014, 4: 1301846CrossRefGoogle Scholar

Copyright information

© Science in China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Tong Zhang (张童)
    • 1
  • Lijian Zhang (张立建)
    • 1
  • Yiwei Yin (尹奕炜)
    • 1
  • Chenhui Jiang (江晨辉)
    • 1
  • Shi’ang Li (李诗昂)
    • 1
  • Changfei Zhu (朱长飞)
    • 1
    Email author
  • Tao Chen (陈涛)
    • 1
    Email author
  1. 1.CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and EngineeringUniversity of Science and Technology of ChinaHefeiChina

Personalised recommendations