Advertisement

Science China Materials

, Volume 62, Issue 5, pp 751–758 | Cite as

Cationic and anionic energetic materials based on a new amphotère

  • Yuangang Xu (许元刚)
  • Pengcheng Wang (王鹏程)
  • Qiuhan Lin (林秋汉)
  • Yao Du (杜耀)
  • Ming Lu (陆明)Email author
Letters
  • 89 Downloads

基于一个新两性化合物的阳离子和阴离子含能材料

摘要

本文报道了5,5ʹ-二氨基-4,4ʹ-二硝氨基-3,3ʹ-双-1,2,4-三唑(1)的第一种阳离子形式及其合成和表征. 化合物1与硝酸反应生成了5, 与RDX相比, 这是一种具有更高的分解温度和更好爆轰性能的炸药, 与HMX相比其感度更低. 1的阴离子作为配体和钾离子的自组装合成了起爆药4, 与目前广泛使用的Pb(N3)2相比较, 它的性能更加优异. 两性化合物1的两个衍生物的分离具有重要意义: (1) 说明了化合物1的两 性性质; (2) 开启了它们作为有前景的含能前体的研究, 为更多含能离子盐的合成提供参考.

Notes

Acknowledgements

This work was financially supported by the joint fund of the National Natural Science Foundation of China and China Academy of Engineering Physics (NSAF, U1530101). We also thank Zaiyong Zhang (Shanghai Institute of Materia Medica) for the analysis of the crystal structures.

Supplementary material

40843_2018_9374_MOESM1_ESM.pdf (611 kb)
Cationic and anionic energetic materials based on a new amphotère

References

  1. 1.
    Rai D, Eary LE, Zachara JM. Environmental chemistry of chromium. Sci Total Environ, 1989, 86: 15–23CrossRefGoogle Scholar
  2. 2.
    Hames D, Hooper N. Biochemistry. New York: Taylor and Francis Group, 2005Google Scholar
  3. 3.
    Singh RP, Verma RD, Meshri DT, et al. Energetic nitrogen-rich salts and ionic liquids. Angew Chem Int Ed, 2006, 45: 3584–3601CrossRefGoogle Scholar
  4. 4.
    Gao H, Shreeve JM. Azole-based energetic salts. Chem Rev, 2011, 111: 7377–7436CrossRefGoogle Scholar
  5. 5.
    Zhang W, Zhang J, Deng M, et al. A promising high-energydensity material. Nat Commun, 2017, 8: 181CrossRefGoogle Scholar
  6. 6.
    Wang Y, Liu Y, Song S, et al. Accelerating the discovery of insensitive high-energy-density materials by a materials genome approach. Nat Commun, 2018, 9: 2444CrossRefGoogle Scholar
  7. 7.
    Yan C, Yang H, Qi X, et al. A simple and versatile strategy for taming FOX-7. Chem Commun, 2018, 54: 9333–9336CrossRefGoogle Scholar
  8. 8.
    Wang P, Xu Y, Lin Q, et al. Recent advances in the syntheses and properties of polynitrogen pentazolate anion cyclo-N5 -and its derivatives. Chem Soc Rev, 2018, 47: 7522–7538CrossRefGoogle Scholar
  9. 9.
    Klapötke TM, Stein M, Stierstorfer J. Salts of 1H-tetrazole— synthesis, characterization and properties. Z Anorg Allg Chem, 2008, 634: 1711–1723CrossRefGoogle Scholar
  10. 10.
    Klapötke TM, Radies H, Stierstorfer J, et al. Coloring properties of various high-nitrogen compounds in pyrotechnic compositions. Prop Explos Pyrotech, 2010, 35: 213–219CrossRefGoogle Scholar
  11. 11.
    Klapötke TM, Stierstorfer J. Azidoformamidinium and 5-aminotetrazolium dinitramide—two highly energetic isomers with a balanced oxygen content. Dalton Trans, 2009, 643–653Google Scholar
  12. 12.
    Ernst V, Klapötke TM, Stierstorfer J. Alkali salts of 5-aminotetrazole— structures and properties. Z Anorg Allg Chem, 2007, 633: 879–887CrossRefGoogle Scholar
  13. 13.
    von Denffer M, Klapötke TM, Miró Sabaté C. Hydrates of 5-amino-1H-tetrazolium halogenide salts—starting materials for the synthesis of energetic compounds. Z Anorg Allg Chem, 2008, 634: 2575–2582CrossRefGoogle Scholar
  14. 14.
    Tao GH, Guo Y, Joo YH, et al. Energetic nitrogen-rich salts and ionic liquids: 5-aminotetrazole (AT) as a weak acid. J Mater Chem, 2008, 18: 5524–5530CrossRefGoogle Scholar
  15. 15.
    von Denffer M, Klapötke TM, Kramer G, et al. Improved synthesis and X-ray structure of 5-aminotetrazolium nitrate. Prop Explo Pyrotech, 2005, 30: 191–195CrossRefGoogle Scholar
  16. 16.
    Jin CM, Ye C, Piekarski C, et al. Mono and bridged azolium picrates as energetic salts. Eur J Inorg Chem, 2005, 2005: 3760–3767CrossRefGoogle Scholar
  17. 17.
    Garg S, Gao H, Joo YH, et al. Taming of the silver FOX. J Am Chem Soc, 2010, 132: 8888–8890CrossRefGoogle Scholar
  18. 18.
    Garg S, Gao H, Parrish DA, et al. FOX-7 (1,1-diamino-2,2-dinitroethene): trapped by copper and amines. Inorg Chem, 2011, 50: 390–395CrossRefGoogle Scholar
  19. 19.
    Vo TT, Parrish DA, Shreeve JM. 1,1-Diamino-2,2-dintroethene (FOX-7) in copper and nickel diamine complexes and copper FOX-7. Inorg Chem, 2012, 51: 1963–1968CrossRefGoogle Scholar
  20. 20.
    Vo TT, Shreeve JM. 1,1-Diamino-2,2-dinitroethene (FOX-7) and 1-amino-1-hydrazino-2,2-dinitroethene (HFOX) as amphotères: bases with strong acids. J Mater Chem A, 2015, 3: 8756–8763CrossRefGoogle Scholar
  21. 21.
    Gao H, Shreeve JM. Recent progress in taming FOX-7 (1,1-diamino-2,2-dinitroethene). RSC Adv, 2016, 6: 56271–56277CrossRefGoogle Scholar
  22. 22.
    Gao H, Huang Y, Ye C, et al. The synthesis of di(aminoguanidine) 5-nitroiminotetrazolate: some diprotic or monoprotic acids as precursors of energetic salts. Chem Eur J, 2008, 14: 5596–5603CrossRefGoogle Scholar
  23. 23.
    Huang Y, Gao H, Twamley B, et al. Nitroamino triazoles: nitrogenrich precursors of stable energetic salts. Eur J Inorg Chem, 2008, 2008: 2560–2568CrossRefGoogle Scholar
  24. 24.
    Wang R, Xu H, Guo Y, et al. Bis[3-(5-nitroimino-1,2,4-triazolate)]-based energetic salts: synthesis and promising properties of a new family of high-density insensitive materials. J Am Chem Soc, 2010, 132: 11904–11905CrossRefGoogle Scholar
  25. 25.
    Yin P, Parrish DA, Shreeve JM. Bis(nitroamino-1,2,4-triazolates): N-bridging strategy toward insensitive energetic materials. Angew Chem Int Ed, 2014, 53: 12889–12892CrossRefGoogle Scholar
  26. 26.
    Yin P, Shreeve JM. From N-nitro to N-nitroamino: preparation of high-performance energetic materials by introducing nitrogencontaining ions. Angew Chem Int Ed, 2015, 54: 14513–14517CrossRefGoogle Scholar
  27. 27.
    Liu T, Qi X, Wang K, et al. Green primary energetic materials based on N-(3-nitro-1-(trinitromethyl)-1H-1,2,4-triazol-5-yl)nitramide. New J Chem, 2017, 41: 9070–9076CrossRefGoogle Scholar
  28. 28.
    Klapötke TM, Leroux M, Schmid PC, et al. Energetic materials based on 5,5’-diamino-4,4’-dinitramino-3,3’-bi-1,2,4-triazole. Chem Asian J, 2016, 11: 844–851CrossRefGoogle Scholar
  29. 29.
    Glück J, Klapötke TM, Rusan M, et al. A strontium-and chlorinefree pyrotechnic illuminant of high color purity. Angew Chem Int Ed, 2017, 56: 16507–16509CrossRefGoogle Scholar
  30. 30.
    Glück J, Gospodinov I, Klapötke TM, et al. Metal salts of 3,3’-diamino-4,4’-dinitramino-5,5’-bi-1,2,4-triazole in pyrotechnic compositions. Z Anorg Allg Chem, 2018, doi: 10.1002/zaac.201800179Google Scholar
  31. 31.
    Xu Y, Zhu Z, Shen C, et al. In situ synthesized energetic salts based on the C-N fused tricyclic 3,9-diamine-6,7-dihydro-bis(triazolo)-tetrazepine cation: a family of high-performance energetic materials. Prop Explos Pyrotech, 2018, 43: 595–601CrossRefGoogle Scholar
  32. 32.
    Xu Y, Lin Q, Wang P, et al. Stabilization of the pentazolate anion in three anhydrous and metal-free energetic salts. Chem Asian J, 2018, 13: 924–928CrossRefGoogle Scholar
  33. 33.
    Turner MJ, McKinnon JJ, Wolff SK, et al. CrystalExplorer17, University of Western Australia. https://doi.org/hirshfeldsurface.net, 2017Google Scholar
  34. 34.
    Tang Y, He C, Mitchell LA, et al. Potassium 4,4’-bis(dinitromethyl)-3,3’-azofurazanate: a highly energetic 3D metal-organic framework as a promising primary explosive. Angew Chem Int Ed, 2016, 55: 5565–5567CrossRefGoogle Scholar
  35. 35.
    He C, Shreeve JM. Potassium 4,5-bis(dinitromethyl)furoxanate: a green primary explosive with a positive oxygen balance. Angew Chem Int Ed, 2016, 55: 772–775CrossRefGoogle Scholar
  36. 36.
    Li C, Zhang M, Chen Q, et al. Three-dimensional metal-organic framework as super heat-resistant explosive: potassium 4-(5-amino-3-nitro-1H-1,2,4-triazol-1-yl)-3,5-dinitropyrazole. Chem Eur J, 2017, 23: 1490–1493CrossRefGoogle Scholar
  37. 37.
    Frisch MJ, Trucks GW, Schlegel HB, et al. Gaussian 09, Revision A.02, Gaussian, Inc., Wallingford CT, 2009Google Scholar
  38. 38.
    Suceska M, EXPLO5, Version 6.01, 2013Google Scholar
  39. 39.
    a) Tests were conducted according to the UN Recommendations on the Transport of Dangerous Goods, Manual of Tests and Criteria, 5th rev. edn, United Nations Publication, New York, 2009. b) 13.4.2 Test 3 (a)(ii) BAM Fallhammer, pp. 75–82. c) 13.5.1 Test 3 (b)(i): BAM friction apparatus, pp. 104–107Google Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Yuangang Xu (许元刚)
    • 1
  • Pengcheng Wang (王鹏程)
    • 1
  • Qiuhan Lin (林秋汉)
    • 1
  • Yao Du (杜耀)
    • 2
  • Ming Lu (陆明)
    • 1
    Email author
  1. 1.School of Chemical EngineeringNanjing University of Science and TechnologyNanjingChina
  2. 2.School of Materials Science & EngineeringBeijing Institute of TechnologyBeijingChina

Personalised recommendations