Advertisement

Excellent ductility and serration feature of metastable CoCrFeNi high-entropy alloy at extremely low temperatures

  • Junpeng Liu (刘俊鹏)
  • Xiaoxiang Guo (郭晓向)
  • Qingyun Lin (林青云)
  • Zhanbing He (何战兵)
  • Xianghai An (安祥海)
  • Laifeng Li (李来风)
  • Peter K. Liaw
  • Xiaozhou Liao (廖晓舟)
  • Liping Yu (于利萍)
  • Junpin Lin (林均品)
  • Lu Xie (谢璐)
  • Jingli Ren (任景莉)Email author
  • Yong Zhang (张勇)Email author
Articles

Abstract

Seldom could metals and alloys maintain excellent properties in cryogenic condition, such as the ductility, owing to the restrained dislocation motion. However, a face-centered-cubic (FCC) CoCrFeNi high-entropy alloy (HEA) with great ductility is investigated under the cryogenic environment. The tensile strength of this alloy can reach a maximum at 1,251±10 MPa, and the strain to failure can stay at as large as 62% at the liquid helium temperature. We ascribe the high strength and ductility to the low stacking fault energy at extremely low temperatures, which facilitates the activation of deformation twinning. Moreover, the FCC→HCP (hexagonal close-packed) transition and serration lead to the sudden decline of ductility below 77 K. The dynamical modeling and analysis of serrations at 4.2 and 20 K verify the unstable state due to the FCC→HCP transition. The deformation twinning together with phase transformation at liquid helium temperature produces an adequate strain-hardening rate that sustains the stable plastic flow at high stresses, resulting in the serration feature.

Keywords

high-entropy alloy liquid-helium temperature twinning phase transition serration feature 

超低温环境下亚稳态CoCrFeNi高熵合金的优异塑性和锯齿流变行为

摘要

低温环境下, 位错的运动受到限制而导致极少数的金属和合金能保持优异的力学性能, 尤其是塑性. 本文研究了具有面心立方结构的CoCrFeNi高熵合金的超低温服役, 发现其在低温环境下具有优异的综合性能. 4.2 K时的拉伸强度达到1260 MPa, 同时延伸率达到62%, 展现出极强的低温应用潜力; 超低温环境下, 高熵合金极低的层错促进了变形孪晶的产生, 使其表现出高强高韧的优异力学性能. 此外, 在液氦环境下, 该合金中FCC-HCP的相转变和锯齿流变行为使得合金在77 K以下温度的塑性降低; 同时, 关于锯齿特征的动态模型分析证实由于相变行为的出现导致该合金中锯齿行为的不稳定特点. 液氦环境下, 大量的变形孪晶和相变行为的共同作用导致了较高的应变硬化率, 从而使高熵合金的塑性变形维持在较高的应力水平, 并且形成了锯齿特征.

Notes

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China (51471025, 51671020, 51471024 and 11771407); the Department of Energy (DOE), Office of Fossil Energy, National Energy Technology Laboratory (DE-FE-0011194) with the program manager Dr. J. Mullen; the support from the US Army Research Office project (W911NF-13-1-0438) with the program managers Drs. M.P. Bakas, S.N. Mathaudhu, and D.M. Stepp; the support from the National Science Foundation (DMR-1611180 and 1809640) with the program directors, Drs G. Shiflet and D. Farkas. We also thank Prof. WH Wang at the Institute of Physics, Chinese Academy of Sciences, Prof. XL Wang at the City University of Hong Kong, and Prof. K Samwer at the University of Göttingen for their insightful and constructive comments on this paper. We appreciate Dr. RJ Huang, SF Li, and Z Zhang at the Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, for their help on mechanical tests.

Supplementary material

40843_2018_9373_MOESM1_ESM.pdf (1.9 mb)
Excellent ductility and serration feature of metastable CoCrFeNi high-entropy alloy at extremely low temperatures

References

  1. 1.
    Reed RP, Clark AF. Materials at low temperatures. American Society for Metals, Ohio, 1983Google Scholar
  2. 2.
    Yang H, Huang C, Wu Z, et al. Analysis on the structural transformation of ITER TF conductor jacket tube. Adv Eng Mater, 2015, 17: 305–310CrossRefGoogle Scholar
  3. 3.
    Ogata T, Nagai K, Ishikawa K. Vamas tests of structural materials at liquid helium temperature. In: Reed RP, Fickett FR, Summers LT, Stieg M (eds.). Advances in Cryogenic Engineering Materials. Boston: Springer, 1994, 1191–1198CrossRefGoogle Scholar
  4. 4.
    Wang Y, Ma E, Valiev R, et al. Tough nanostructured metals at cryogenic temperatures. Adv Mater, 2004, 16: 328–331CrossRefGoogle Scholar
  5. 5.
    Gludovatz B, Hohenwarter A, Catoor D, et al. A fracture-resistant high-entropy alloy for cryogenic applications. Science, 2014, 345: 1153–1158CrossRefGoogle Scholar
  6. 6.
    Gludovatz B, Hohenwarter A, Thurston KVS, et al. Exceptional damage-tolerance of a medium-entropy alloy CrCoNi at cryogenic temperatures. Nat Commun, 2016, 7: 10602CrossRefGoogle Scholar
  7. 7.
    Jo YH, Jung S, Choi WM, et al. Cryogenic strength improvement by utilizing room-temperature deformation twinning in a partially recrystallized VCrMnFeCoNi high-entropy alloy. Nat Commun, 2017, 8: 15719CrossRefGoogle Scholar
  8. 8.
    Deng Y, Tasan CC, Pradeep KG, et al. Design of a twinninginduced plasticity high entropy alloy. Acta Mater, 2015, 94: 124–133CrossRefGoogle Scholar
  9. 9.
    Laplanche G, Kostka A, Horst OM, et al. Microstructure evolution and critical stress for twinning in the CrMnFeCoNi high-entropy alloy. Acta Mater, 2016, 118: 152–163CrossRefGoogle Scholar
  10. 10.
    Zhu YT, Liao XZ, Srinivasan SG, et al. Nucleation and growth of deformation twins in nanocrystalline aluminum. Appl Phys Lett, 2014, 85: 5049–5051CrossRefGoogle Scholar
  11. 11.
    Blewitt TH, Coltman RR, Redman JK. Low-temperature deformation of copper single crystals. J Appl Phys, 1957, 28: 651–660CrossRefGoogle Scholar
  12. 12.
    Zhu YT, Liao XZ, Wu XL. Deformation twinning in nanocrystalline materials. Prog Mater Sci, 2012, 57: 1–62CrossRefGoogle Scholar
  13. 13.
    Wu Z, Bei H, Pharr GM, et al. Temperature dependence of the mechanical properties of equiatomic solid solution alloys with face-centered cubic crystal structures. Acta Mater, 2014, 81: 428–441CrossRefGoogle Scholar
  14. 14.
    Liu B, Wang J, Liu Y, et al. Microstructure and mechanical properties of equimolar FeCoCrNi high entropy alloy prepared via powder extrusion. Intermetallics, 2016, 75: 25–30CrossRefGoogle Scholar
  15. 15.
    Huo W, Zhou H, Fang F, et al. Strain-rate effect upon the tensile behavior of CoCrFeNi high-entropy alloys. Mater Sci Eng-A, 2017, 689: 366–369CrossRefGoogle Scholar
  16. 16.
    Huo W, Fang F, Zhou H, et al. Remarkable strength of CoCrFeNi high-entropy alloy wires at cryogenic and elevated temperatures. Scripta Mater, 2017, 141: 125–128CrossRefGoogle Scholar
  17. 17.
    Zhang Y, Zuo TT, Tang Z, et al. Microstructures and properties of high-entropy alloys. Prog Mater Sci, 2014, 61: 1–93CrossRefGoogle Scholar
  18. 18.
    Miracle DB, Senkov ON. A critical review of high entropy alloys and related concepts. Acta Mater, 2017, 122: 448–511CrossRefGoogle Scholar
  19. 19.
    Lyu Z, Fan X, Lee C, et al. Fundamental understanding of mechanical behavior of high-entropy alloys at low temperatures: A review. J Mater Res, 2018, 33: 2998–3010CrossRefGoogle Scholar
  20. 20.
    Laktionova MA, Tabchnikova ED, Tang Z, et al. Mechanical properties of the high-entropy alloy Ag0.5CoCrCuFeNi at temperatures of 4.2–300 K. Low Temperature Phys, 2013, 39: 630–632CrossRefGoogle Scholar
  21. 21.
    Qiao JW, Ma SG, Huang EW, et al. Microstructural characteristics and mechanical behaviors of AlCoCrFeNi high-entropy alloys at ambient and cryogenic temperatures. MSF, 2011, 688: 419–425CrossRefGoogle Scholar
  22. 22.
    Zhang W, Liaw PK, Zhang Y. Science and technology in highentropy alloys. Sci China Mater, 2018, 61: 2–22CrossRefGoogle Scholar
  23. 23.
    Li DY, Zhang Y. The ultrahigh charpy impact toughness of forged AlxCoCrFeNi high entropy alloys at room and cryogenic temperatures. Intermetallics, 2016, 70: 24–28CrossRefGoogle Scholar
  24. 24.
    Vicsek T. Fractal growth phenomena. Singapore: World Scientific, 1992CrossRefGoogle Scholar
  25. 25.
    Chen C, Ren J, Wang G, et al. Scaling behavior and complexity of plastic deformation for a bulk metallic glass at cryogenic temperatures. Phys Rev E, 2015, 92: 012113CrossRefGoogle Scholar
  26. 26.
    Chen S, Yu L, Ren J, et al. Self-similar random process and chaotic behavior in serrated flow of high entropy alloys. Sci Rep, 2016, 6: 29798CrossRefGoogle Scholar
  27. 27.
    Ren JL, Chen C, Wang G, et al. Dynamics of serrated flow in a bulk metallic glass. AIP Adv, 2011, 1: 032158CrossRefGoogle Scholar
  28. 28.
    Ren JL, Chen C, Liu ZY, et al. Plastic dynamics transition between chaotic and self-organized critical states in a glassy metal via a multifractal intermediate. Phys Rev B, 2012, 86: 134303CrossRefGoogle Scholar
  29. 29.
    Guo X, Xie X, Ren J, et al. Plastic dynamics of the Al0.5 CoCrCuFeNi high entropy alloy at cryogenic temperatures: Jerky flow, stair-like fluctuation, scaling behavior, and non-chaotic state. Appl Phys Lett, 2017, 111: 251905CrossRefGoogle Scholar
  30. 30.
    Takens F. Detecting strange attractors in turbulence. In: Rand D, Young LS (eds). Dynamical Systems and Turbulence, Warwick 1980. Lecture Notes in Mathematics, vol 898. Heidelberg: Springer, 1981, 366–381CrossRefGoogle Scholar
  31. 31.
    Packard NH, Crutchfield JP, Farmer JD, et al. Geometry from a time series. Phys Rev Lett, 1980, 45: 712–716CrossRefGoogle Scholar
  32. 32.
    Fraser AM, Swinney HL. Independent coordinates for strange attractors from mutual information. Phys Rev A, 1986, 33: 1134–1140CrossRefGoogle Scholar
  33. 33.
    Cao L. Practical method for determining the minimum embedding dimension of a scalar time series. Physica D-Nonlinear Phenomena, 1997, 110: 43–50CrossRefGoogle Scholar
  34. 34.
    Wolf A, Swift JB, Swinney HL, et al. Determining Lyapunov exponents from a time series. Physica D-Nonlinear Phenomena, 1985, 16: 285–317CrossRefGoogle Scholar
  35. 35.
    http://www.copper.org/resources/properties/144_8/Google Scholar
  36. 36.
    Estrin Y, Isaev NV, Lubenets SV, et al. Effect of microstructure on plastic deformation of Cu at low homologous temperatures. Acta Mater, 2006, 54: 5581–5590CrossRefGoogle Scholar
  37. 37.
    Tobler RL, Berger JR, Bussiba A. Long-crack fatigue thresholds and short crack simulation at liquid helium temperature. In: Fickett FR, Reed RP (eds.). Advances in Cryogenic Engineering: Materials. Boston: Springer, 1992, 159–166Google Scholar
  38. 38.
    Das A, Tarafder S. Geometry of dimples and its correlation with mechanical properties in austenitic stainless steel. Scripta Mater, 2008, 59: 1014–1017CrossRefGoogle Scholar
  39. 39.
    Otto F, Dlouhý A, Somsen C, et al. The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy. Acta Mater, 2013, 61: 5743–5755CrossRefGoogle Scholar
  40. 40.
    Huang S, Li W, Lu S, et al. Temperature dependent stacking fault energy of FeCrCoNiMn high entropy alloy. Scripta Mater, 2015, 108: 44–47CrossRefGoogle Scholar
  41. 41.
    Zhang F, Wu Y, Lou H, et al. Polymorphism in a high-entropy alloy. Nat Commun, 2017, 8: 15687CrossRefGoogle Scholar
  42. 42.
    Pustovalov VV. Serrated deformation of metals and alloys at low temperatures. Low Temperature Phys, 2008, 34: 683–723CrossRefGoogle Scholar
  43. 43.
    Zhang Y, Liu JP, Chen SY, et al. Serration and noise behaviors in materials. Prog Mater Sci, 2017, 90: 358–460CrossRefGoogle Scholar
  44. 44.
    Antonaglia J, Xie X, Tang Z, et al. Temperature effects on deformation and serration behavior of high-entropy alloys (HEAs). JOM, 2014, 66: 2002–2008CrossRefGoogle Scholar
  45. 45.
    Tirunilai AS, Sas J, Weiss KP, et al. Peculiarities of deformation of CoCrFeMnNi at cryogenic temperatures. J Mater Res, 2018, 33: 3287–3300CrossRefGoogle Scholar
  46. 46.
    Grässel O, Krüger L, Frommeyer G, et al. High strength Fe–Mn–(Al, Si) TRIP/TWIP steels development—properties—application. Int J Plast, 2000, 16: 1391–1409CrossRefGoogle Scholar
  47. 47.
    Li Z, Pradeep KG, Deng Y, et al. Metastable high-entropy dualphase alloys overcome the strength–ductility trade-off. Nature, 2016, 534: 227–230CrossRefGoogle Scholar
  48. 48.
    Lin Q, Liu J, An X, et al. Cryogenic-deformation-induced phase transformation in an FeCoCrNi high-entropy alloy. Mater Res Lett, 2018, 6: 236–243CrossRefGoogle Scholar
  49. 49.
    Miao J, Slone CE, Smith TM, et al. The evolution of the deformation substructure in a Ni-Co-Cr equiatomic solid solution alloy. Acta Mater, 2018, 132: 35–48CrossRefGoogle Scholar

Copyright information

© Science in China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Junpeng Liu (刘俊鹏)
    • 1
    • 6
  • Xiaoxiang Guo (郭晓向)
    • 2
  • Qingyun Lin (林青云)
    • 3
  • Zhanbing He (何战兵)
    • 1
  • Xianghai An (安祥海)
    • 3
  • Laifeng Li (李来风)
    • 4
  • Peter K. Liaw
    • 5
  • Xiaozhou Liao (廖晓舟)
    • 3
  • Liping Yu (于利萍)
    • 2
  • Junpin Lin (林均品)
    • 1
  • Lu Xie (谢璐)
    • 1
  • Jingli Ren (任景莉)
    • 2
    Email author
  • Yong Zhang (张勇)
    • 1
    • 6
    Email author
  1. 1.State Key Laboratory for Advanced Metals and MaterialsUniversity of Science and Technology BeijingBeijingChina
  2. 2.School of Mathematics and StatisticsZhengzhou UniversityZhengzhouChina
  3. 3.School of Aerospace, Mechanical & Mechatronic EngineeringThe University of SydneySydneyAustralia
  4. 4.Key laboratory of Cryogenics, Technical Institute of Physics and ChemistryChinese Academy of SciencesBeijingChina
  5. 5.Department of Materials Science and EngineeringThe University of TennesseeKnoxvilleUSA
  6. 6.Beijing Advanced Innovation Center for Materials Genome EngineeringUniversity of Science and Technology BeijingBeijingChina

Personalised recommendations