Science China Materials

, Volume 62, Issue 3, pp 399–406 | Cite as

Fast preparation route to high-performances textured Sr-doped Ca3Co4O9 thermoelectric materials through precursor powder modification

  • Miguel Angel Torres
  • Gustavo Garcia
  • Idoia Urrutibeascoa
  • Maria Antonieta MadreEmail author
  • Juan Carlos Diez
  • Andres Sotelo


This work presents a short and very efficient method to produce high performance textured Ca3Co4O9 thermoelectric materials through initial powders modification. Microstructure has shown good grain orientation, and low porosity while slightly lower grain sizes were obtained in samples prepared from attrition milled powders. All samples show the high density of around 96% of the theoretical value. These similar characteristics are reflected in, approximately, the same electrical resistivity and Seebeck coefficient values for both types of samples. However, in spite of similar power factor (PF) at low temperatures, it is slightly higher at high temperature for the attrition milled samples. On the other hand, the processing time reduction (from 38 to 2 h) when using attrition milled precursors, leads to lower mechanical properties in these samples. All these data clearly point out to the similar characteristics of both kinds of samples, with a drastic processing time decrease when using attrition milled precursors, which is of the main economic importance when considering their industrial production.


ceramics oxides hot-pressing electrical properties power factor 



The authors thank the Gobierno de Aragón- FEDER (Research Group T 54–17 R), the Spanish MINECO-FEDER (MAT2017-82183-C3-1-R), and Basque Government Industry Department through the Elkartek program (Exp: KK-2017/00099-HiTOM) for financial support. The use of Servicio General de Apoyo a la Investigación- SAI, Universidad de Zaragoza is also acknowledged.


  1. 1.
    Hamid Elsheikh M, Shnawah DA, Sabri MFM, et al. A review on thermoelectric renewable energy: Principle parameters that affect their performance. Renew Sustain Energy Rev, 2014, 30: 337–355CrossRefGoogle Scholar
  2. 2.
    Rowe DM. Thermoelectrics Handbook: Macro to Nano, New York: CRC Press, 2006Google Scholar
  3. 3.
    Wang H, Hwang J, Snedaker ML, et al. High thermoelectric performance of a heterogeneous PbTe nanocomposite. Chem Mater, 2015, 27: 944–949CrossRefGoogle Scholar
  4. 4.
    Santamaría JA, Alkorta J, Gil Sevillano J. Microcompression tests of single-crystalline and ultrafine grain Bi2Te3 thermoelectric material. J Mater Res, 2015, 30: 2593–2604CrossRefGoogle Scholar
  5. 5.
    Terasaki I, Sasago Y, Uchinokura K. Large thermoelectric power in NaCo2O4 single crystals. Phys Rev B, 1997, 56: R12685–R12687CrossRefGoogle Scholar
  6. 6.
    Masset AC, Michel C, Maignan A, et al. Misfit-layered cobaltite with an anisotropic giant magnetoresistance: Ca3Co4O9. Phys Rev B, 2000, 62: 166–175CrossRefGoogle Scholar
  7. 7.
    Madre MA, Rasekh S, Diez JC, et al. New solution method to produce high performance thermoelectric ceramics: A case study of Bi-Sr-Co-O. Mater Lett, 2010, 64: 2566–2568CrossRefGoogle Scholar
  8. 8.
    Wang H, Wang C. Thermoelectric properties of Yb-doped La0.1Sr0.9TiO3 ceramics at high temperature. Ceramics Int, 2013, 39: 941–946CrossRefGoogle Scholar
  9. 9.
    Li L, Liu Y, Qin X, et al. Enhanced thermoelectric performance of highly dense and fine-grained (Sr1−xGdx)TiO3−δ ceramics synthesized by sol–gel process and spark plasma sintering. J Alloys Compd, 2014, 588: 562–567CrossRefGoogle Scholar
  10. 10.
    Zhu YH, Su WB, Liu J, et al. Effects of Dy and Yb co-doping on thermoelectric properties of CaMnO3 ceramics. Ceramics Int, 2015, 41: 1535–1539CrossRefGoogle Scholar
  11. 11.
    Sotelo A, Torres M, Madre M, et al. Effect of synthesis process on the densification, microstructure, and electrical properties of Ca0.9Yb0.1 MnO3 ceramics. Int J Appl Ceram Technol, 2017, 14: 1190–1196CrossRefGoogle Scholar
  12. 12.
    Löhnert R, Stelter M, Töpfer J. Evaluation of soft chemistry methods to synthesize Gd-doped CaMnO3−δ with improved ther-moelectric properties. Mater Sci Eng-B, 2017, 223: 185–193CrossRefGoogle Scholar
  13. 13.
    Noudem JG, Kenfaui D, Chateigner D, et al. Granular and lamellar thermoelectric oxides consolidated by spark plasma sintering. J Elec Materi, 2011, 40: 1100–1106CrossRefGoogle Scholar
  14. 14.
    Wang H, Sun X, Yan X, et al. Fabrication and thermoelectric properties of highly textured Ca9Co12O28 ceramic. J Alloys Compd, 2014, 582: 294–298CrossRefGoogle Scholar
  15. 15.
    Sotelo A, Rasekh S, Constantinescu G, et al. Improvement of textured Bi1.6Pb0.4Sr2Co1.8Ox thermoelectric performances by metallic Ag additions. Ceramics Int, 2013, 39: 1597–1602CrossRefGoogle Scholar
  16. 16.
    Rasekh S, Ferreira NM, Costa FM, et al. Development of a new thermoelectric Bi2Ca2Co1.7Ox+Ca3Co4O9 composite. Scripta Mater, 2014, 80: 1–4CrossRefGoogle Scholar
  17. 17.
    Delorme F, Chen C, Pignon B, et al. Promising high temperature thermoelectric properties of dense Ba2Co9O14 ceramics. J Eur Ceramic Soc, 2017, 37: 2615–2620CrossRefGoogle Scholar
  18. 18.
    Constantinescu G, Rasekh S, Torres MA, et al. Effect of Sr substitution for Ca on the Ca3Co4O9 thermoelectric properties. J Alloys Compd, 2013, 577: 511–515CrossRefGoogle Scholar
  19. 19.
    Delorme F, Martin CF, Marudhachalam P, et al. Effect of Ca substitution by Sr on the thermoelectric properties of Ca3Co4O9 ceramics. J Alloys Compd, 2011, 509: 2311–2315CrossRefGoogle Scholar
  20. 20.
    Sotelo A, Rasekh S, Torres MA, et al. Effect of synthesis methods on the Ca3Co4O9 thermoelectric ceramic performances. J Solid State Chem, 2015, 221: 247–254CrossRefGoogle Scholar
  21. 21.
    Chemistry WebBook of NIST.
  22. 22.
    Woermann E, Muan A. Phase equilibria in the system CaO-cobalt oxide in air. J InOrg Nucl Chem, 1970, 32: 1455–1459CrossRefGoogle Scholar
  23. 23.
    Liu H, Lin GC, Ding XD, et al. Mechanical relaxation in thermoelectric oxide Ca3−xSrxCo4O9+δ (x=0, 0.25, 0.5, 1.0) associated with oxygen vacancies. J Solid State Chem, 2013, 200: 305–309CrossRefGoogle Scholar
  24. 24.
    Delorme F, Diaz-Chao P, Guilmeau E, et al. Thermoelectric properties of Ca3Co4O9–Co3O4 composites. Ceramics Int, 2015, 41: 10038–10043CrossRefGoogle Scholar
  25. 25.
    Delorme F, Ovono Ovono D, Marudhachalam P, et al. Effect of precursors size on the thermoelectric properties of Ca3Co4O9 ceramics. Mater Res Bull, 2012, 47: 1169–1175CrossRefGoogle Scholar
  26. 26.
    Kahraman F, Madre MA, Rasekh S, et al. Enhancement of mechanical and thermoelectric properties of Ca3Co4O9 by Ag addition. J Eur Ceramic Soc, 2015, 35: 3835–3841CrossRefGoogle Scholar
  27. 27.
    Kenfaui D, Chateigner D, Gomina M, et al. Texture, mechanical and thermoelectric properties of Ca3Co4O9 ceramics. J Alloys Compd, 2010, 490: 472–479CrossRefGoogle Scholar
  28. 28.
    Rasekh S, Torres MA, Constantinescu G, et al. Effect of Cu by Co substitution on Ca3Co4O9 thermoelectric ceramics. J Mater Sci- Mater Electron, 2013, 24: 2309–2314CrossRefGoogle Scholar
  29. 29.
    Schulz T, Töpfer J. Thermoelectric properties of Ca3Co4O9 ceramics prepared by an alternative pressure-less sintering/annealing method. J Alloys Compd, 2016, 659: 122–126CrossRefGoogle Scholar
  30. 30.
    Sotelo A, Costa FM, Ferreira NM, et al. Tailoring Ca3Co4O9 microstructure and performances using a transient liquid phase sintering additive. J Eur Ceramic Soc, 2016, 36: 1025–1032CrossRefGoogle Scholar
  31. 31.
    Li YN, Wu P, Zhang SP, et al. Thermoelectric properties of lower concentration K-doped Ca3Co4O9 ceramics. Chin Phys B, 2018, 27: 057201CrossRefGoogle Scholar
  32. 32.
    Zhang Y, Zhang J, Lu Q. Synthesis of highly textured Ca3Co4O9 ceramics by spark plasma sintering. Ceramics Int, 2007, 33: 1305–1308CrossRefGoogle Scholar
  33. 33.
    Noudem JG, Kenfaui D, Chateigner D, et al. Toward the enhancement of thermoelectric properties of lamellar Ca3Co4O9 by edge-free spark plasma texturing. Scripta Mater, 2012, 66: 258–260CrossRefGoogle Scholar
  34. 34.
    Koshibae W, Tsutsui K, Maekawa S. Thermopower in cobalt oxides. Phys Rev B, 2000, 62: 6869–6872CrossRefGoogle Scholar
  35. 35.
    Tian R, Donelson R, Ling CD, et al. Ga substitution and oxygen diffusion kinetics in Ca3Co4O9+δ-based thermoelectric oxides. J Phys Chem C, 2013, 117: 13382–13387CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Miguel Angel Torres
    • 1
  • Gustavo Garcia
    • 2
  • Idoia Urrutibeascoa
    • 3
  • Maria Antonieta Madre
    • 1
    Email author
  • Juan Carlos Diez
    • 1
  • Andres Sotelo
    • 1
  1. 1.ICMA (CSIC-Universidad de Zaragoza)50018Spain
  2. 2.Centro Stirling S. Coop.Aretxabaleta (Guipuzcoa)Spain
  3. 3.Mondragon UnibertsitateaArrasate (Guipuzcoa)Spain

Personalised recommendations