Advertisement

Science China Materials

, Volume 62, Issue 3, pp 448–454 | Cite as

A molecular-templating strategy to polyamine-incorporated porous organic polymers for unprecedented CO2 capture and separation

  • Dechuan Zhao (赵德川)
  • Chunlong Kong (孔春龙)Email author
  • Hongbin Du (杜红斌)
  • Yonggang Yan (严永刚)
  • Zhiyong U. Wang (王志勇)
  • Hai-Long Jiang (江海龙)Email author
  • Liang Chen (陈亮)Email author
Letter
  • 171 Downloads

分子模板法策略制备多胺注入的多孔有机聚合物实现高效CO2捕获与分离

摘要

本论文用简单、 通用的分子模板策略制备了具有极高CO2吸附与分离效率的多胺注入多孔有机聚合物(POPs). 在该策略中, CO2分子存在下, 多胺能均匀分散在母体多孔材料中. CO2模板分子能够产生有效的均匀分布孔, 能允许CO2分子进入但不允许其他较大分子如 N2和CH4进入. 在0.15 bar和323 K下, 制备的PPN-6/PEI-165展现出超高的4.52 mmol g−1 CO2吸附量且没有检测到N2和CH4吸附. 此外, 该材料对水汽稳定且温和条件(343K下真空)下易再生. 据我们所知, 该结果在迄今为止所报道的固体多孔吸附剂中有最好的CO2选择性捕获性能.

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (51672289, 21725101, 21673213 and 21521001), the Aided Program for Science and Technology Innovative Research Team of Ningbo Municipality (2014B81004), Natural Science Funding of Zhejiang Province (LY15E020008), the National Program on Key Basic Research Project of China (973 Program) (2014CB931803) and Youth Innovation Promotion of CAS (2016272).

Supplementary material

40843_2018_9333_MOESM1_ESM.pdf (3.7 mb)
A molecular-templating strategy to polyamine-incorporated porous organic polymer for unprecedented CO2 capture and separation

References

  1. 1.
    Horike S, Inubushi Y, Hori T, et al. A solid solution approach to 2D coordination polymers for CH4/CO2 and CH4/C2H6 gas separation: equilibrium and kinetic studies. Chem Sci, 2012, 3: 116–120CrossRefGoogle Scholar
  2. 2.
    Lin LC, Berger AH, Martin RL, et al. In silico screening of carboncapture materials. Nat Mater, 2012, 11: 633–641CrossRefGoogle Scholar
  3. 3.
    Wang Q, Luo J, Zhong Z, et al. CO2 capture by solid adsorbents and their applications: current status and new trends. Energy Environ Sci, 2011, 4: 42–55CrossRefGoogle Scholar
  4. 4.
    Choi W, Min K, Kim C, et al. Epoxide-functionalization of polyethyleneimine for synthesis of stable carbon dioxide adsorbent in temperature swing adsorption. Nat Commun, 2016, 7: 12640CrossRefGoogle Scholar
  5. 5.
    Wang J, Senkovska I, Oschatz M, et al. Highly porous nitrogendoped polyimine-based carbons with adjustable microstructures for CO2 capture. J Mater Chem A, 2013, 1: 10951–10961CrossRefGoogle Scholar
  6. 6.
    Kim C, Cho HS, Chang S, et al. An ethylenediamine-grafted Y zeolite: a highly regenerable carbon dioxide adsorbent via temperature swing adsorption without urea formation. Energy Environ Sci, 2016, 9: 1803–1811CrossRefGoogle Scholar
  7. 7.
    Bae TH, Hudson MR, Mason JA, et al. Evaluation of cation-exchanged zeolite adsorbents for post-combustion carbon dioxide capture. Energy Environ Sci, 2013, 6: 128–138CrossRefGoogle Scholar
  8. 8.
    De Baerdemaeker T, De Vos D. Trapdoors in zeolites. Nat Chem, 2016, 5: 89–90CrossRefGoogle Scholar
  9. 9.
    Deria P, Mondloch JE, Tylianakis E, et al. Perfluoroalkane functionalization of NU-1000 via solvent-assisted ligand incorporation: synthesis and CO2 adsorption studies. J Am Chem Soc, 2013, 135: 16801–16804CrossRefGoogle Scholar
  10. 10.
    Zhai QG, Bu X, Mao C, et al. An ultra-tunable platform for molecular engineering of high-performance crystalline porous materials. Nat Commun, 2016, 7: 13645CrossRefGoogle Scholar
  11. 11.
    Li B, Zhang Z, Li Y, et al. Enhanced binding affinity, remarkable selectivity, and high capacity of CO2 by dual functionalization of a rht-type metal-organic framework. Angew Chem Int Ed, 2012, 51: 1412–1415CrossRefGoogle Scholar
  12. 12.
    Sumida K, Rogow DL, Mason JA, et al. Carbon dioxide capture in metal–organic frameworks. Chem Rev, 2012, 112: 724–781CrossRefGoogle Scholar
  13. 13.
    Yu J, Xie LH, Li JR, et al. CO2 capture and separations using MOFs: computational and experimental studies. Chem Rev, 2017, 117: 9674–9754CrossRefGoogle Scholar
  14. 14.
    Flaig RW, Osborn Popp TM, Fracaroli AM, et al. The chemistry of CO2 capture in an amine-functionalized metal–organic framework under dry and humid conditions. J Am Chem Soc, 2017, 139: 12125–12128CrossRefGoogle Scholar
  15. 15.
    Rao KV, Haldar R, Kulkarni C, et al. Perylene based porous polyimides: tunable, high surface area with tetrahedral and pyramidal monomers. Chem Mater, 2012, 24: 969–971CrossRefGoogle Scholar
  16. 16.
    Dawson R, Stöckel E, Holst JR, et al. Microporous organic polymers for carbon dioxide capture. Energy Environ Sci, 2011, 4: 4239–4245CrossRefGoogle Scholar
  17. 17.
    Huang N, Chen X, Krishna R, et al. Two-dimensional covalent organic frameworks for carbon dioxide capture through channelwall functionalization. Angew Chem, 2015, 127: 3029–3033CrossRefGoogle Scholar
  18. 18.
    Tan LL, Li H, Tao Y, et al. Pillar[5]arene-based supramolecular organic frameworks for highly selective CO2-capture at ambient conditions. Adv Mater, 2014, 26: 7027–7031CrossRefGoogle Scholar
  19. 19.
    Hong S, Rohman MR, Jia J, et al. Porphyrin boxes: rationally designed porous organic cages. Angew Chem Int Ed, 2015, 54: 13241–13244CrossRefGoogle Scholar
  20. 20.
    Li B, Zhang Y, Krishna R, et al. Introduction of π-complexation into porous aromatic framework for highly selective adsorption of ethylene over ethane. J Am Chem Soc, 2014, 136: 8654–8660CrossRefGoogle Scholar
  21. 21.
    Zhang X, Lu J, Zhang J. Porosity enhancement of carbazolic porous organic frameworks using dendritic building blocks for gas storage and separation. Chem Mater, 2014, 26: 4023–4029CrossRefGoogle Scholar
  22. 22.
    Ben T, Ren H, Ma S, et al. Targeted synthesis of a porous aromatic framework with high stability and exceptionally high surface area. Angew Chem, 2009, 121: 9621–9624CrossRefGoogle Scholar
  23. 23.
    Lu W, Yuan D, Sculley J, et al. Sulfonate-grafted porous polymer networks for preferential CO2 adsorption at low pressure. J Am Chem Soc, 2011, 133: 18126–18129CrossRefGoogle Scholar
  24. 24.
    Lu W, Verdegaal WM, Yu J, et al. Building multiple adsorption sites in porous polymer networks for carbon capture applications. Energy Environ Sci, 2013, 6: 3559–3564CrossRefGoogle Scholar
  25. 25.
    McDonald TM, Lee WR, Mason JA, et al. Capture of carbon dioxide from air and flue gas in the alkylamine-appended metal–organic framework mmen-Mg2 (dobpdc). J Am Chem Soc, 2012, 134: 7056–7065CrossRefGoogle Scholar
  26. 26.
    Holewinski A, Sakwa-Novak MA, Jones CW. Linking CO2 sorption performance to polymer morphology in aminopolymer/silica composites through neutron scattering. J Am Chem Soc, 2015, 137: 11749–11759CrossRefGoogle Scholar
  27. 27.
    Kuwahara Y, Kang DY, Copeland JR, et al. Dramatic enhancement of CO2 uptake by poly(ethyleneimine) using zirconosilicate supports. J Am Chem Soc, 2012, 134: 10757–10760CrossRefGoogle Scholar
  28. 28.
    Sung S, Suh MP. Highly efficient carbon dioxide capture with a porous organic polymer impregnated with polyethylenimine. J Mater Chem A, 2014, 2: 13245–13249CrossRefGoogle Scholar
  29. 29.
    Lin Y, Yan Q, Kong C, et al. Polyethyleneimine incorporated metal-organic frameworks adsorbent for highly selective CO2 capture. Sci Rep, 2013, 3: 1859CrossRefGoogle Scholar
  30. 30.
    Hong DY, Hwang YK, Serre C, et al. Porous chromium terephthalate MIL-101 with coordinatively unsaturated sites: surface functionalization, encapsulation, sorption and catalysis. Adv Funct Mater, 2009, 19: 1537–1552CrossRefGoogle Scholar
  31. 31.
    Burtch NC, Jasuja H, Walton KS. Water stability and adsorption in metal–organic frameworks. Chem Rev, 2014, 114: 10575–10612CrossRefGoogle Scholar
  32. 32.
    Jeromenok J, Weber J. Restricted access: on the nature of adsorption/desorption hysteresis in amorphous, microporous polymeric materials. Langmuir, 2013, 29: 12982–12989CrossRefGoogle Scholar
  33. 33.
    Liao PQ, Chen H, Zhou DD, et al. Monodentate hydroxide as a super strong yet reversible active site for CO2 capture from highhumidity flue gas. Energy Environ Sci, 2015, 8: 1011–1016CrossRefGoogle Scholar
  34. 34.
    Zhang Z, Nguyen HTH, Miller SA, et al. Polymer–metal–organic frameworks (polyMOFs) as water tolerant materials for selective carbon dioxide separations. J Am Chem Soc, 2016, 138: 920–925CrossRefGoogle Scholar
  35. 35.
    Nagarkar SS, Chaudhari AK, Ghosh SK. Selective CO2 adsorption in a robust and water-stable porous coordination polymer with new network topology. Inorg Chem, 2012, 51: 572–576CrossRefGoogle Scholar
  36. 36.
    Ding N, Li H, Feng X, et al. Partitioning MOF-5 into confined and hydrophobic compartments for carbon capture under humid conditions. J Am Chem Soc, 2016, 138: 10100–10103CrossRefGoogle Scholar
  37. 37.
    Katz MJ, Brown ZJ, Colón YJ, et al. A facile synthesis of UiO-66, UiO-67 and their derivatives. Chem Commun, 2013, 49: 9449–9451CrossRefGoogle Scholar
  38. 38.
    Lin Y, Kong C, Chen L. Direct synthesis of amine-functionalized MIL-101(Cr) nanoparticles and application for CO2 capture. RSC Adv, 2012, 2: 6417–6419CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Dechuan Zhao (赵德川)
    • 1
    • 2
  • Chunlong Kong (孔春龙)
    • 2
    Email author
  • Hongbin Du (杜红斌)
    • 2
  • Yonggang Yan (严永刚)
    • 1
  • Zhiyong U. Wang (王志勇)
    • 4
  • Hai-Long Jiang (江海龙)
    • 3
    Email author
  • Liang Chen (陈亮)
    • 2
    Email author
  1. 1.College of Physical Science and TechnologySichuan UniversityChengduChina
  2. 2.Ningbo Institute of Materials Technology and EngineeringChinese Academy of SciencesNingboChina
  3. 3.Hefei National Laboratory for Physical Sciences at the Microscale, Collaborative Innovation Center of Suzhou Nano Science and Technology, Department of ChemistryUniversity of Science and Technology of ChinaHefeiChina
  4. 4.Department of Chemistry and PhysicsTroy UniversityTroyUSA

Personalised recommendations