Advertisement

Science China Materials

, Volume 62, Issue 3, pp 416–422 | Cite as

Superatom-assembly induced transition from insulator to semiconductor: A theoretical study

  • Jia Wang (王佳)
  • Wanrun Jiang (姜万润)
  • Weiyu Xie (解伟誉)
  • Jianpeng Wang (王健鹏)
  • Zhigang Wang (王志刚)Email author
Articles
  • 156 Downloads

Abstract

Assembly is an effective way to realize the functionalization potential of boron-based superatoms. Here we study the interaction between typical boron-based B40 superatoms using the density functional theory. Our results reveal that different oligomers constructed by modulating the arrangement of two B40 superatoms still retain some of the superatomic properties associated with their monomeric form despite possessing different electronic structures. While the inner shell superatomic orbitals maintain their electronic localization, the valence shell superatomic orbitals cannot maintain their original shape due to bonding and antibonding hybridization. Furthermore, the decreasing of band gap means that the B40 oligomers could achieve a transformation from insulators to semiconductors. The decreased band gap is possibly due to the disappearance of the superatomic orbitals with the principal quantum number of two. Our findings highlight that superatom–superatom interactions could induce synergy effects that differ from their monomers. Therefore, this research will aid in the development of new materials and devices that are constructed from superatoms.

Keywords

superatom intermolecular interaction electronic structure density functional theory 

超原子组装诱导的从绝缘体到半导体性质转变: 一个理论研究

摘要

硼基超原子通向功能材料的一个途径是组装. 我们通过密度泛函理论研究了典型的硼基超原子B40之间的相互作用. 结果显示, 在不 同的低聚物中两个B40之间不同的朝向方式会导致电子结构改变, 但它们都部分保持了超原子性质. 这是因为单体中靠内壳层的超原子轨 道仍保持其在超原子中的电子局域性, 而价壳层的超原子轨道由于超原子间成键或反键杂化而不能保持孤立超原子的轨道形状. 在部分 保持超原子性质的情况下, B40超原子的组装可以相应实现从绝缘体到半导体的转变. 带隙的减小是由“主量子数”为2的超原子轨道杂化成 键导致的. 我们的发现凸显了超原子间相互作用, 会带来不同于单体的协同效应. 因此, 这一研究将有助于新型材料和器件的发展, 尤其在 以超原子为功能单元的组装材料研究方面将发挥积极作用.

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (11674123 and 11374004). Wang Z also acknowledges the High Performance Computing Center of Jilin University.

Supplementary material

40843_2018_9329_MOESM1_ESM.pdf (1.7 mb)
Superatom-assembly induced transition from insulator to semiconductor : A theoretical study

References

  1. 1.
    Kalsin AM, Fialkowski M, Paszewski M, et al. Electrostatic selfassembly of binary nanoparticle crystals with a diamond-like lattice. Science, 2006, 312: 420–424CrossRefGoogle Scholar
  2. 2.
    Sharma J, Chhabra R, Cheng A, et al. Control of self-assembly of DNA tubules through integration of gold nanoparticles. Science, 2009, 323: 112–116CrossRefGoogle Scholar
  3. 3.
    Shevchenko EV, Talapin DV, Kotov NA, et al. Structural diversity in binary nanoparticle superlattices. Nature, 2006, 439: 55–59CrossRefGoogle Scholar
  4. 4.
    Daniel MC, Astruc D. Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev, 2004, 104: 293–346CrossRefGoogle Scholar
  5. 5.
    Claridge SA, Castleman Jr. AW, Khanna SN, et al. Cluster-assembled materials. ACS Nano, 2009, 3: 244–255Google Scholar
  6. 6.
    Qian M, Reber AC, Ugrinov A, et al. Cluster-assembled materials: toward nanomaterials with precise control over properties. ACS Nano, 2010, 4: 235–240CrossRefGoogle Scholar
  7. 7.
    Zhang S, Zhang Y, Huang S, et al. Theoretical investigation of growth, stability, and electronic properties of beaded ZnO nanoclusters. J Mater Chem, 2011, 21: 16905CrossRefGoogle Scholar
  8. 8.
    Zhang S, Zhang Y, Huang S, et al. Theoretical investigations of spsp2 hybridized zero-dimensional fullerenynes. Nanoscale, 2012, 4: 2839–2842CrossRefGoogle Scholar
  9. 9.
    Roy X, Lee CH, Crowther AC, et al. Nanoscale atoms in solid-state chemistry. Science, 2013, 341: 157–160CrossRefGoogle Scholar
  10. 10.
    Krätschmer W, Lamb LD, Fostiropoulos K, et al. Solid C60: a new form of carbon. Nature, 1990, 347: 354–358CrossRefGoogle Scholar
  11. 11.
    Liu F, Mostoller M, Kaplan T, et al. Evidence for a new class of solids. First-principles study of K(Al13). Chem Phys Lett, 1996, 248: 213–217CrossRefGoogle Scholar
  12. 12.
    Reber AC, Khanna SN, Castleman AW. Superatom compounds, clusters, and assemblies: ultra alkali motifs and architectures. J Am Chem Soc, 2007, 129: 10189–10194CrossRefGoogle Scholar
  13. 13.
    Khanna SN, Jena P. Assembling crystals from clusters. Phys Rev Lett, 1992, 69: 1664–1667CrossRefGoogle Scholar
  14. 14.
    Castleman AW, Khanna SN, Sen A, et al. From designer clusters to synthetic crystalline nanoassemblies. Nano Lett, 2007, 7: 2734–2741CrossRefGoogle Scholar
  15. 15.
    Yang H, Wang Y, Huang H, et al. All-thiol-stabilized Ag44 and Au12Ag32 nanoparticles with single-crystal structures. Nat Commun, 2013, 4: 2422CrossRefGoogle Scholar
  16. 16.
    Champsaur AM, Yu J, Roy X, et al. Two-dimensional nanosheets from redox-active superatoms. ACS Cent Sci, 2017, 3: 1050–1055CrossRefGoogle Scholar
  17. 17.
    Wang J, Yu T, Gao Y, et al. All-boron fullerene B40: a superatomic structure. Sci China Mater, 2017, 60: 1264–1268CrossRefGoogle Scholar
  18. 18.
    Yu T, Gao Y, Xu D, et al. Actinide endohedral boron clusters: A closed-shell electronic structure of U@B40. Nano Res, 2018, 11: 354–359CrossRefGoogle Scholar
  19. 19.
    Zhai HJ, Zhao YF, Li WL, et al. Observation of an all-boron fullerene. Nat Chem, 2014, 6: 727–731CrossRefGoogle Scholar
  20. 20.
    Jin P, Hou Q, Tang C, et al. Computational investigation on the endohedral borofullerenes M@B40 (M = Sc, Y, La). Theor Chem Acc, 2015, 134: 13CrossRefGoogle Scholar
  21. 21.
    Bai H, Chen Q, Zhai HJ, et al. Endohedral and exohedral metalloborospherenes: M@B40 (M=Ca, Sr) and M&B40 (M=Be, Mg). Angew Chem Int Ed, 2015, 54: 941–945CrossRefGoogle Scholar
  22. 22.
    Fa W, Chen S, Pande S, et al. Stability of metal-encapsulating boron fullerene B40. J Phys Chem A, 2015, 119: 11208–11214CrossRefGoogle Scholar
  23. 23.
    Dong H, Lin B, Gilmore K, et al. B40 fullerene: An efficient material for CO2 capture, storage and separation. Curr Appl Phys, 2015, 15: 1084–1089CrossRefGoogle Scholar
  24. 24.
    Gao G, Ma F, Jiao Y, et al. Modelling CO2 adsorption and separation on experimentally-realized B40 fullerene. Comput Mater Sci, 2015, 108: 38–41CrossRefGoogle Scholar
  25. 25.
    Dong H, Hou T, Lee ST, et al. New Ti-decorated B40 fullerene as a promising hydrogen storage material. Sci Rep, 2015, 5: 9952CrossRefGoogle Scholar
  26. 26.
    Lin B, Dong H, Du C, et al. B40 fullerene as a highly sensitive molecular device for NH3 detection at low bias: a first-principles study. Nanotechnology, 2016, 27: 075501CrossRefGoogle Scholar
  27. 27.
    Yang Z, Ji YL, Lan G, et al. Design molecular rectifier and photodetector with all-boron fullerene. Solid State Commun, 2015, 217: 38–42CrossRefGoogle Scholar
  28. 28.
    Shakerzadeh E, Biglari Z, Tahmasebi E. M@B40 (M = Li, Na, K) serving as a potential promising novel NLO nanomaterial. Chem Phys Lett, 2016, 654: 76–80CrossRefGoogle Scholar
  29. 29.
    Li Z, Yu G, Zhang X, et al. Bonding the superalkali M3O (M = Li and K): An effective strategy to improve the electronic and nonlinear optical properties of the inorganic B40 nanocage. Physica ELow-dimensional Syst Nanostruct, 2017, 94: 204–210CrossRefGoogle Scholar
  30. 30.
    Yang Y, Zhang Z, Penev ES, et al. B40 cluster stability, reactivity, and its planar structural precursor. Nanoscale, 2017, 9: 1805–1810CrossRefGoogle Scholar
  31. 31.
    Zheludev NI. The road ahead for metamaterials. Science, 2010, 328: 582–583CrossRefGoogle Scholar
  32. 32.
    Grimme S, Antony J, Ehrlich S, et al. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J Chem Phys, 2010, 132: 154104–154104CrossRefGoogle Scholar
  33. 33.
    Adamo C, Barone V. Toward reliable density functional methods without adjustable parameters: The PBE0 model. J Chem Phys, 1999, 110: 6158–6170CrossRefGoogle Scholar
  34. 34.
    Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett, 1996, 77: 3865–3868CrossRefGoogle Scholar
  35. 35.
    Hehre WJ, Ditchfield R, Pople JA. Self-consistent molecular orbital methods. XII. Further extensions of Gaussian-type basis sets for use in molecular orbital studies of organic molecules. J Chem Phys, 1972, 56: 2257–2261Google Scholar
  36. 36.
    He R, Zeng XC. Electronic structures and electronic spectra of allboron fullerene B40. Chem Commun, 2015, 51: 3185–3188CrossRefGoogle Scholar
  37. 37.
    Frisch MJ, Trucks GW, Schlegel HB, et al. Gaussian 09, revision d.01. 2013Google Scholar
  38. 38.
    Morokuma K. Molecular orbital studies of hydrogen bonds. III. C=O···H–O hydrogen bond in H2CO···H2O and H2CO···2H2O. J Chem Phys, 1971, 55: 1236–1244Google Scholar
  39. 39.
    Ziegler T, Rauk A. On the calculation of bonding energies by the Hartree Fock Slater method. Theoret Chim Acta, 1977, 46: 1–10CrossRefGoogle Scholar
  40. 40.
    te Velde G, Bickelhaupt FM, Baerends EJ, et al. Chemistry with ADF. J Comput Chem, 2001, 22: 931–967CrossRefGoogle Scholar
  41. 41.
    Delley B. From molecules to solids with the DMol3 approach. J Chem Phys, 2000, 113: 7756–7764CrossRefGoogle Scholar
  42. 42.
    Kurakevych OO, Solozhenko VL. Rhombohedral boron subnitride, B13N2, by X-ray powder diffraction. Acta Crystlogr C Cryst Struct Commun, 2007, 63: i80–i82CrossRefGoogle Scholar
  43. 43.
    Beu TA, Onoe J, Hida A. First-principles calculations of the electronic structure of one-dimensional C60 polymers. Phys Rev B, 2005, 72: 155416CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Jia Wang (王佳)
    • 1
    • 2
  • Wanrun Jiang (姜万润)
    • 1
    • 2
  • Weiyu Xie (解伟誉)
    • 1
    • 2
  • Jianpeng Wang (王健鹏)
    • 1
    • 2
  • Zhigang Wang (王志刚)
    • 1
    • 2
    Email author
  1. 1.Institute of Atomic and Molecular PhysicsJilin UniversityChangchunChina
  2. 2.Jilin Provincial Key Laboratory of Applied Atomic and Molecular Spectroscopy (Jilin University)ChangchunChina

Personalised recommendations