Advertisement

Science China Materials

, Volume 62, Issue 2, pp 194–202 | Cite as

Porous aromatic framework (PAF-1) as hyperstable platform for enantioselective organocatalysis

  • Peng Chen (陈鹏)
  • Jin-Shi Sun (孙金时)
  • Lei Zhang (张蕾)
  • Wen-Yue Ma (马文悦)
  • Fuxing Sun (孙福兴)
  • Guangshan Zhu (朱广山)
Articles
  • 99 Downloads

Abstract

High density of phenyl rings makes PAF-1 have robust structure and highly lipophilic pore, which make it very suitable for organocatalysis. However, there is no report about using PAF-1 as platform for enantioselective organocatalysis. In this paper, using PAF-1 as the platform, a chiral prolinamide catalytic site was introduced onto the framework of PAF-1 via a series of stepwise post-synthetic modifications, obtaining a novel PAF-supported chiral catalyst named PAF-1-NHPro. Then its enantioselective catalytic performance was studied by subjecting it to catalyze the model Aldol reaction between p-nitrobenzaldehyde and cyclohexanone. PAF-1-NHPro showed good diastereoselectivity and enantioselectivity with excellent and easy recyclability.

Keywords

porous aromatic frameworks L-prolinamide heterogeneous enantioselective organocatalysis Aldol reaction 

以多孔芳香骨架材料PAF-1作为对映选择性有机催化的超稳定固载平台

摘要

PAF-1 是最著名的多孔芳香骨架材料(PAF), 它拥有许多优异的性质并且可被用于多个领域. 由高密度的苯环组成的PAF-1材料拥有刚性结构和亲脂性孔道, 非常适合用作有机催化的平台. 但是迄今为止, 尚未有将其应用到对映选择性有机催化的报道. 本论文以PAF-1为固载平台, 将手性脯氨酰胺催化位点通过一系列后修饰的方法固载到PAF-1的骨架上, 得到了新颖的手性固载催化剂PAF-1-NHPro.PAF-1-NHPro在催化对硝基苯甲醛和环己酮的Aldol反应的过程中表现出了优良的非对映选择性和对映选择性以及良好的可回收利用性. 本工作展现了PAF材料在非均相对映选择性有机催化领域的应用前景.

Notes

Acknowledgements

This work was supported by the National Basic Research Program of China (2014CB931804) and the National Natural Science Foundation of China (21302061 and 21531003).

Supplementary material

40843_2018_9319_MOESM1_ESM.pdf (2 mb)
Porous aromatic framework (PAF-1) as hyperstable platform for enantioselective organocatalysis

References

  1. 1.
    Banerjee M, Das S, Yoon M, et al. Postsynthetic modification switches an achiral framework to catalytically active homochiral metal−organic porous materials. J Am Chem Soc, 2009, 131: 7524–7525CrossRefGoogle Scholar
  2. 2.
    Dang D, Wu P, He C, et al. Homochiral metal−organic frameworks for heterogeneous asymmetric catalysis. J Am Chem Soc, 2010, 132: 14321–14323CrossRefGoogle Scholar
  3. 3.
    Lun DJ, Waterhouse GIN, Telfer SG. A general thermolabile protecting group strategy for organocatalytic metal−organic frameworks. J Am Chem Soc, 2011, 133: 5806–5809CrossRefGoogle Scholar
  4. 4.
    Zhu W, He C, Wu P, et al. “Click” post-synthetic modification of metal–organic frameworks with chiral functional adduct for heterogeneous asymmetric catalysis. Dalton Trans, 2012, 41: 3072–3077CrossRefGoogle Scholar
  5. 5.
    Lili L, Xin Z, Shumin R, et al. Catalysis by metal–organic frameworks: proline and gold functionalized MOFs for the aldol and three-component coupling reactions. RSC Adv, 2014, 4: 13093–13107CrossRefGoogle Scholar
  6. 6.
    Liu Y, Xi X, Ye C, et al. Chiral metal-organic frameworks bearing free carboxylic acids for organocatalyst encapsulation. Angew Chem Int Ed, 2014, 53: 13821–13825CrossRefGoogle Scholar
  7. 7.
    Bonnefoy J, Legrand A, Quadrelli EA, et al. Enantiopure peptidefunctionalized metal–organic frameworks. J Am Chem Soc, 2015, 137: 9409–9416CrossRefGoogle Scholar
  8. 8.
    Kutzscher C, Hoffmann HC, Krause S, et al. Proline functionalization of the mesoporous metal−organic framework DUT-32. Inorg Chem, 2015, 54: 1003–1009CrossRefGoogle Scholar
  9. 9.
    Kutzscher C, Nickerl G, Senkovska I, et al. Proline functionalized UiO-67 and UiO-68 type metal–organic frameworks showing reversed diastereoselectivity in aldol addition reactions. Chem Mater, 2016, 28: 2573–2580CrossRefGoogle Scholar
  10. 10.
    Ma L, Abney C, Lin W. Enantioselective catalysis with homochiral metal–organic frameworks. Chem Soc Rev, 2009, 38: 1248–1256CrossRefGoogle Scholar
  11. 11.
    Seo JS, Whang D, Lee H, et al. A homochiral metal–organic porous material for enantioselective separation and catalysis. Nature, 2000, 404: 982–986CrossRefGoogle Scholar
  12. 12.
    Yoon M, Srirambalaji R, Kim K. Homochiral metal–organic frameworks for asymmetric heterogeneous catalysis. Chem Rev, 2012, 112: 1196–1231CrossRefGoogle Scholar
  13. 13.
    Leus K, Liu YY,Van Der Voort P. Metal-organic frameworks as selective or chiral oxidation catalysts. Catal Rev, 2014, 56: 1–56CrossRefGoogle Scholar
  14. 14.
    Bhattacharjee S, Khan M, Li X, et al. Recent progress in asymmetric catalysis and chromatographic separation by chiral metal–organic frameworks. Catalysts, 2018, 8: 120CrossRefGoogle Scholar
  15. 15.
    Ding SY, Wang W. Covalent organic frameworks COFs: from design to applications. Chem Soc Rev, 2013, 42: 548–568CrossRefGoogle Scholar
  16. 16.
    Xu H, Chen X, Gao J, et al. Catalytic covalent organic frameworks via pore surface engineering. Chem Commun, 2014, 50: 1292–1294CrossRefGoogle Scholar
  17. 17.
    Xu H, Gao J, Jiang D. Stable, crystalline, porous, covalent organic frameworks as a platform for chiral organocatalysts. Nat Chem, 2015, 7: 905–912CrossRefGoogle Scholar
  18. 18.
    Wang X, Han X, Zhang J, et al. Homochiral 2D porous covalent organic frameworks for heterogeneous asymmetric catalysis. J Am Chem Soc, 2016, 138: 12332–12335CrossRefGoogle Scholar
  19. 19.
    Ma HC, Kan JL, Chen GJ, et al. Pd NPs-loaded homochiral covalent organic framework for heterogeneous asymmetric catalysis. Chem Mater, 2017, 29: 6518–6524CrossRefGoogle Scholar
  20. 20.
    Han X, Xia Q, Huang J, et al. Chiral covalent organic frameworks with high chemical stability for heterogeneous asymmetric catalysis. J Am Chem Soc, 2017, 139: 8693–8697CrossRefGoogle Scholar
  21. 21.
    Liu G, Sheng J, Zhao Y. Chiral covalent organic frameworks for asymmetric catalysis and chiral separation. Sci China Chem, 2017, 60: 1015–1022CrossRefGoogle Scholar
  22. 22.
    Han X, Zhang J, Huang J, et al. Chiral induction in covalent organic frameworks. Nat Commun, 2018, 9: 1294CrossRefGoogle Scholar
  23. 23.
    Xu HS, Ding SY, An WK, et al. Constructing crystalline covalent organic frameworks from chiral building blocks. J Am Chem Soc, 2016, 138: 11489–11492CrossRefGoogle Scholar
  24. 24.
    Zhang J, Han X, Wu X, et al. Multivariate chiral covalent organic frameworks with controlled crystallinity and stability for asymmetric catalysis. J Am Chem Soc, 2017, 139: 8277–8285CrossRefGoogle Scholar
  25. 25.
    Wang CA, Zhang ZK, Yue T, et al. “Bottom-up” embedding of the Jørgensen-Hayashi catalyst into a chiral porous polymer for highly efficient heterogeneous asymmetric organocatalysis. Chem Eur J, 2012, 18: 6718–6723CrossRefGoogle Scholar
  26. 26.
    An WK, Han MY, Wang CA, et al. Insights into the asymmetric heterogeneous catalysis in porous organic polymers: constructing a taddol-embedded chiral catalyst for studying the structure-activity relationship. Chem Eur J, 2014, 20: 11019–11028CrossRefGoogle Scholar
  27. 27.
    Dong J, Liu Y, Cui Y. Chiral porous organic frameworks for asymmetric heterogeneous catalysis and gas chromatographic separation. Chem Commun, 2014, 50: 14949–14952CrossRefGoogle Scholar
  28. 28.
    Zhang Y, Ying JY. Main-chain organic frameworks with advanced catalytic functionalities. ACS Catal, 2015, 5: 2681–2691CrossRefGoogle Scholar
  29. 29.
    Sun Q, Dai Z, Meng X, et al. Homochiral porous framework as a platform for durability enhancement of molecular catalysts. Chem Mater, 2017, 29: 5720–5726CrossRefGoogle Scholar
  30. 30.
    Wang CA, Li YW, Han YF, et al. The “bottom-up” construction of chiral porous organic polymers for heterogeneous asymmetric organocatalysis: MacMillan catalyst built-in nanoporous organic frameworks. Polym Chem, 2017, 8: 5561–5569CrossRefGoogle Scholar
  31. 31.
    Zhang X, Kormos A, Zhang J. Self-supported BINOL-derived phosphoric acid based on a chiral carbazolic porous framework. Org Lett, 2017, 19: 6072–6075CrossRefGoogle Scholar
  32. 32.
    Lin ZJ,Lü J, Li L, et al. Defect porous organic frameworks dPOFs as a platform for chiral organocatalysis. J Catal, 2017, 355: 131–138CrossRefGoogle Scholar
  33. 33.
    Zou X, Ren H, Zhu G. Topology-directed design of porous organic frameworks and their advanced applications. Chem Commun, 2013, 49: 3925–3936CrossRefGoogle Scholar
  34. 34.
    Pei C, Ben T, Qiu S. Great prospects for PAF-1 and its derivatives. Mater Horiz, 2015, 2: 11–21CrossRefGoogle Scholar
  35. 35.
    Díaz U, Corma A. Ordered covalent organic frameworks, COFs and PAFs. From preparation to application. Coord Chem Rev, 2016, 311: 85–124CrossRefGoogle Scholar
  36. 36.
    Das S, Heasman P, Ben T, et al. Porous organic materials: strategic design and structure–function correlation. Chem Rev, 2017, 117: 1515–1563CrossRefGoogle Scholar
  37. 37.
    Jing LP, Sun JS, Sun F, et al. Porous aromatic framework with mesopores as a platform for a super-efficient heterogeneous Pdbased organometallic catalysis. Chem Sci, 2018, 9: 3523–3530CrossRefGoogle Scholar
  38. 38.
    Sun JS, Jing LP, Tian Y, et al. Task-specific design of a hierarchical porous aromatic framework as an ultrastable platform for largesized catalytic active site binding. Chem Commun, 2018, 54: 1603–1606CrossRefGoogle Scholar
  39. 39.
    Ben T, Ren H, Ma S, et al. Targeted synthesis of a porous aromatic framework with high stability and exceptionally high surface area. Angew Chem Int Ed, 2009, 48: 9457–9460CrossRefGoogle Scholar
  40. 40.
    Trewin A, Cooper AI. Porous organic polymers: distinction from disorder? Angew Chem Int Ed, 2010, 49: 1533–1535CrossRefGoogle Scholar
  41. 41.
    Ben T, Qiu S. Porous aromatic frameworks: Synthesis, structure and functions. CrystEngComm, 2013, 15: 17–26CrossRefGoogle Scholar
  42. 42.
    Thomas JMH, Trewin A. Amorphous PAF-1: guiding the rational design of ultraporous materials. J Phys Chem C, 2014, 118: 19712–19722CrossRefGoogle Scholar
  43. 43.
    Lu W, Yuan D, Sculley J, et al. Sulfonate-grafted porous polymer networks for preferential CO2 adsorption at low pressure. J Am Chem Soc, 2011, 133: 18126–18129CrossRefGoogle Scholar
  44. 44.
    Lu W, Sculley JP, Yuan D, et al. Polyamine-tethered porous polymer networks for carbon dioxide capture from flue gas. Angew Chem Int Ed, 2012, 51: 7480–7484CrossRefGoogle Scholar
  45. 45.
    Konstas K, Taylor JW, Thornton AW, et al. Lithiated porous aromatic frameworks with exceptional gas storage capacity. Angew Chem Int Ed, 2012, 51: 6639–6642CrossRefGoogle Scholar
  46. 46.
    Garibay SJ, Weston MH, Mondloch JE, et al. Accessing functionalized porous aromatic frameworks PAFs through a de novo approach. CrystEngComm, 2013, 15: 1515–1519CrossRefGoogle Scholar
  47. 47.
    Lu W, Verdegaal WM, Yu J, et al. Building multiple adsorption sites in porous polymer networks for carbon capture applications. Energy Environ Sci, 2013, 6: 3559–3564CrossRefGoogle Scholar
  48. 48.
    Li B, Zhang Y, Ma D, et al. Mercury nano-trap for effective and efficient removal of mercuryII from aqueous solution. Nat Commun, 2014, 5: 5537CrossRefGoogle Scholar
  49. 49.
    Van Humbeck JF, McDonald TM, Jing X, et al. Ammonia capture in porous organic polymers densely functionalized with brønsted acid groups. J Am Chem Soc, 2014, 136: 2432–2440CrossRefGoogle Scholar
  50. 50.
    Yue Y, Zhang C, Tang Q, et al. A polyacrylonitrile-functionalized porous aromatic framework synthesized by atom-transfer radical polymerization for the extraction of uranium from seawater. Ind Eng Chem Res, 2015, 55: 4125–4129CrossRefGoogle Scholar
  51. 51.
    Hei ZH, Huang MH, Luo Y, et al. A well-defined nitro-functionalized aromatic framework NO2-PAF-1 with high CO2 adsorption: synthesis via the copper-mediated Ullmann homo-coupling polymerization of a nitro-containing monomer. Polym Chem, 2016, 7: 770–774CrossRefGoogle Scholar
  52. 52.
    Banerjee D, Elsaidi SK, Aguila B, et al. Removal of pertechnetaterelated oxyanions from solution using functionalized hierarchical porous frameworks. Chem Eur J, 2016, 22: 17581–17584CrossRefGoogle Scholar
  53. 53.
    Li B, Zhang Y, Ma D, et al. Creation of a new type of ion exchange material for rapid, high-capacity, reversible and selective ion exchange without swelling and entrainment. Chem Sci, 2016, 7: 2138–2144CrossRefGoogle Scholar
  54. 54.
    Lee S, Barin G, Ackerman CM, et al. Copper capture in a thioetherfunctionalized porous polymer applied to the detection of Wilson’s disease. J Am Chem Soc, 2016, 138: 7603–7609CrossRefGoogle Scholar
  55. 55.
    Li B, Sun Q, Zhang Y, et al. Functionalized porous aromatic framework for efficient uranium adsorption from aqueous solutions. ACS Appl Mater Interfaces, 2017, 9: 12511–12517CrossRefGoogle Scholar
  56. 56.
    Barin G, Peterson GW, Crocellà V, et al. Highly effective ammonia removal in a series of Brønsted acidic porous polymers: investigation of chemical and structural variations. Chem Sci, 2017, 8: 4399–4409CrossRefGoogle Scholar
  57. 57.
    Li B, Zhang Y, Krishna R, et al. Introduction of π-complexation into porous aromatic framework for highly selective adsorption of ethylene over ethane. J Am Chem Soc, 2014, 136: 8654–8660CrossRefGoogle Scholar
  58. 58.
    Lau CH, Konstas K, Thornton AW, et al. Gas-separation membranes loaded with porous aromatic frameworks that improve with age. Angew Chem Int Ed, 2015, 54: 2669–2673CrossRefGoogle Scholar
  59. 59.
    Zhang Y, Li B, Ma S. Dual functionalization of porous aromatic frameworks as a new platform for heterogeneous cascade catalysis. Chem Commun, 2014, 50: 8507–8510CrossRefGoogle Scholar
  60. 60.
    Wu M, Chen G, Liu P, et al. Preparation of porous aromatic framework/ ionic liquid hybrid composite coated solid-phase microextraction fibers and their application in the determination of organochlorine pesticides combined with GC-ECD detection. Analyst, 2016, 141: 243–250CrossRefGoogle Scholar
  61. 61.
    Comotti A, Bracco S, Mauri M, et al. Confined polymerization in porous organic frameworks with an ultrahigh surface area. Angew Chem Int Ed, 2012, 51: 10136–10140CrossRefGoogle Scholar
  62. 62.
    Peng Y, Ben T, Jia Y, et al. Dehydrogenation of ammonia borane confined by low-density porous aromatic framework. J Phys Chem C, 2012, 116: 25694–25700CrossRefGoogle Scholar
  63. 63.
    Lau CH, Nguyen PT, Hill MR, et al. Ending aging in super glassy polymer membranes. Angew Chem Int Ed, 2014, 53: 5322–5326CrossRefGoogle Scholar
  64. 64.
    Klumpen C, Gödrich S, Papastavrou G, et al. Water mediated proton conduction in a sulfonated microporous organic polymer. Chem Commun, 2017, 53: 7592–7595CrossRefGoogle Scholar
  65. 65.
    de Arriba ÁLF, Simón L, Raposo C, et al. Proline imidazolidinones and enamines in Hajos–Wiechert and Wieland–Miescher ketone synthesis. Tetrahedron, 2009, 65: 4841–4845CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Peng Chen (陈鹏)
    • 1
    • 3
  • Jin-Shi Sun (孙金时)
    • 1
  • Lei Zhang (张蕾)
    • 1
  • Wen-Yue Ma (马文悦)
    • 1
  • Fuxing Sun (孙福兴)
    • 1
  • Guangshan Zhu (朱广山)
    • 1
    • 2
  1. 1.State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of ChemistryJilin UniversityChangchunChina
  2. 2.Key Laboratory of Polyoxometalate Science of the Ministry of Education, Faculty of ChemistryNortheast Normal UniversityChangchunChina
  3. 3.Institute of Drug Discovery TechnologyNingbo UniversityNingboChina

Personalised recommendations