Science China Materials

, Volume 62, Issue 2, pp 149–153 | Cite as

New monatomic layer clusters for advanced catalysis materials

  • Bin-Wei Zhang (张斌伟)
  • Long Ren (任龙)
  • Yun-Xiao Wang (王云晓)Email author
  • Yi Du (杜轶)Email author
  • Lei Jiang (江雷)
  • Shi-Xue Dou (窦士学)



“单原子层团簇”催化剂这一新概念, 不同于单原子催化剂和传统的纳米颗粒催化, 是由单原子建造新型的二维单原子层催化剂. 单原子层团簇催化剂的活性中心明确, 且原子间的相互作用会极大提高催化反应的选择性. 因此该催化剂材料不仅具有优异的催化性能, 还具有良好的选择性. 基于此, 作者同时分析和指出了未来的单原子层团簇催化剂的可能重点研究方向以及挑战.



This research was supported by the Australian Research Council (ARC) (DE170100928 and DP170101467), the Commonwealth of Australia through the Automotive Australia 2020 Cooperative Research Centre (AutoCRC), and Baosteel-Australia Joint Research and Development Center (BA14006). The authors acknowledge the use of the facilities at the UOW Electron Microscopy Centre funded by ARC Grants (LE0882813 and LE0237478) and Dr. Tania Silver for her critical reading.


  1. 1.
    Grirrane A, Corma A, García H. Gold-catalyzed synthesis of aromatic azo compounds from anilines and nitroaromatics. Science, 2008, 322: 1661–1664CrossRefGoogle Scholar
  2. 2.
    Rodriguez JA, Ma S, Liu P, et al. Activity of CeOx and TiOx nanoparticles grown on Au(111) in the water-gas shift reaction. Science, 2007, 318: 1757–1760CrossRefGoogle Scholar
  3. 3.
    Gilroy KD, Ruditskiy A, Peng HC, et al. Bimetallic nanocrystals: syntheses, properties, and applications. Chem Rev, 2016, 116: 10414–10472CrossRefGoogle Scholar
  4. 4.
    Qiao B, Wang A, Yang X, et al. Single-atom catalysis of COoxidation using Pt1/FeOx. Nat Chem, 2011, 3: 634–641CrossRefGoogle Scholar
  5. 5.
    Yang XF, Wang A, Qiao B, et al. Single-atom catalysts: a new frontier in heterogeneous catalysis. Acc Chem Res, 2013, 46: 1740–1748CrossRefGoogle Scholar
  6. 6.
    Bayatsarmadi B, Zheng Y, Vasileff A, et al. Recent advances in atomic metal doping of carbon-based nanomaterials for energy conversion. Small, 2017, 13: 1700191CrossRefGoogle Scholar
  7. 7.
    Tsuji Y, Yamamoto K, Yamauchi K, et al. Near-infrared lightdriven hydrogen evolution from water using a polypyridyl triruthenium photosensitizer. Angew Chem Int Ed, 2018, 57: 208–212CrossRefGoogle Scholar
  8. 8.
    Li H, Wang L, Dai Y, et al. Synergetic interaction between neighbouring platinum monomers in CO2 hydrogenation. Nat Nanotech, 2018, 13: 411–417CrossRefGoogle Scholar
  9. 9.
    Guo X, Fang G, Li G, et al. Direct, nonoxidative conversion of methane to ethylene, aromatics, and hydrogen. Science, 2014, 344: 616–619CrossRefGoogle Scholar
  10. 10.
    Jones J, Xiong H, DeLaRiva AT, et al. Thermally stable single-atom platinum-on-ceria catalysts via atom trapping. Science, 2016, 353: 150–154CrossRefGoogle Scholar
  11. 11.
    Deng D, Chen X, Yu L, et al. A single iron site confined in a graphene matrix for the catalytic oxidation of benzene at room temperature. Sci Adv, 2015, 1: e1500462CrossRefGoogle Scholar
  12. 12.
    Liu P, Zhao Y, Qin R, et al. Photochemical route for synthesizing atomically dispersed palladium catalysts. Science, 2016, 352: 797–800CrossRefGoogle Scholar
  13. 13.
    Wang H, Wang Q, Cheng Y, et al. Doping monolayer graphene with single atom substitutions. Nano Lett, 2012, 12: 141–144CrossRefGoogle Scholar
  14. 14.
    Zhang BW, Sheng T, Wang YX, et al. Platinum–cobalt bimetallic nanoparticles with Pt skin for electro-oxidation of ethanol. ACS Catal, 2017, 7: 892–895CrossRefGoogle Scholar
  15. 15.
    Liu L, Corma A. Metal catalysts for heterogeneous catalysis: from single atoms to nanoclusters and nanoparticles. Chem Rev, 2018, 118: 4981–5079CrossRefGoogle Scholar
  16. 16.
    Guo S, Zhang S, Sun S. Tuning nanoparticle catalysis for the oxygen reduction reaction. Angew Chem Int Ed, 2013, 52: 8526–8544CrossRefGoogle Scholar
  17. 17.
    Stamenkovic VR, Fowler B, Mun BS, et al. Improved oxygen reduction activity on Pt3Ni(111) via increased surface site availability. Science, 2007, 315: 493–497CrossRefGoogle Scholar
  18. 18.
    Tian N, Zhou ZY, Sun SG, et al. Synthesis of tetrahexahedral platinum nanocrystals with high-index facets and high electrooxidation activity. Science, 2007, 316: 732–735CrossRefGoogle Scholar
  19. 19.
    Liu S, Tian N, Xie AY, et al. Electrochemically seed-mediated synthesis of sub-10 nm tetrahexahedral Pt nanocrystals supported on graphene with improved catalytic performance. J Am Chem Soc, 2016, 138: 5753–5756CrossRefGoogle Scholar
  20. 20.
    Tyo EC, Vajda S. Catalysis by clusters with precise numbers of atoms. Nat Nanotechnol, 2015, 10: 577–588CrossRefGoogle Scholar
  21. 21.
    Kaden WE, Wu T, Kunkel WA, et al. Electronic structure controls reactivity of size-selected Pd clusters adsorbed on TiO2 surfaces. Science, 2009, 326: 826–829CrossRefGoogle Scholar
  22. 22.
    Sanchez A, Abbet S, Heiz U, et al. When gold is not noble: nanoscale gold catalysts. J Phys Chem A, 1999, 103: 9573–9578CrossRefGoogle Scholar
  23. 23.
    Jin H, Guo C, Liu X, et al. Emerging two-dimensional nanomaterials for electrocatalysis. Chem Rev, 2018, doi:10.1021/acs. chemrev.7b00689Google Scholar
  24. 24.
    Huber B, Koskinen P, Häkkinen H, et al. Oxidation of magnesiasupported Pd-clusters leads to the ultimate limit of epitaxy with a catalytic function. Nat Mater, 2006, 5: 44–47CrossRefGoogle Scholar
  25. 25.
    Yao S, Zhang X, Zhou W, et al. Atomic-layered Au clusters on α-MoC as catalysts for the low-temperature water-gas shift reaction. Science, 2017, 357: 389–393CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Bin-Wei Zhang (张斌伟)
    • 1
  • Long Ren (任龙)
    • 1
  • Yun-Xiao Wang (王云晓)
    • 1
    Email author
  • Yi Du (杜轶)
    • 1
    • 2
    Email author
  • Lei Jiang (江雷)
    • 2
    • 3
    • 4
  • Shi-Xue Dou (窦士学)
    • 1
    • 2
  1. 1.Institute for Superconducting and Electronic Materials, Australian Institute of Innovative MaterialsUniversity of Wollongong, Innovation CampusNorth WollongongAustralia
  2. 2.BUAA-UOW Joint Research CentreBeihang UniversityBeijingChina
  3. 3.Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of the Ministry of Education, School of Chemistry and EnvironmentBeihang UniversityBeijingChina
  4. 4.Laboratory of Bio-inspired Smart Interface Science, Technical Institute of Physics and ChemistryChinese Academy of ScienceBeijingChina

Personalised recommendations