Science China Materials

, Volume 62, Issue 2, pp 225–235 | Cite as

High-performance flexible and broadband photodetectors based on PbS quantum dots/ZnO nanoparticles heterostructure

  • Mingfa Peng (彭明发)
  • Yongjie Wang (汪永杰)
  • Qingqing Shen (沈青青)
  • Xinkai Xie (谢欣凯)
  • Hechuang Zheng (郑和闯)
  • Wanli Ma (马万里)
  • Zhen Wen (文震)Email author
  • Xuhui Sun (孙旭辉)Email author


Flexible and broadband photodetectors have drawn extensive attention due to their potential application in foldable displays, optical communications, environmental monitoring, etc. In this work, a flexible photodetector based on the crystalline PbS quantum dots (QDs)/ZnO nanoparticles (NPs) heterostructure was proposed. The photodetector exhibits a broadband response from ultraviolet-visible (UV-Vis) to near infrared detector (NIR) range with a remarkable current on/off ratio of 7.08×103 under 375 nm light illumination. Compared with pure ZnO NPs, the heterostructure photodetector shows the three orders of magnitude higher responsivity in Vis and NIR range, and maintains its performance in the UV range simultaneously. The photodetector demonstrates a high responsivity and detectivity of 4.54 A W−1 and 3.98×1012 Jones. In addition, the flexible photodetectors exhibit excellent durability and stability even after hundreds of times bending. This work paves a promising way for constructing next-generation high-performance flexible and broadband optoelectronic devices.


flexible broadband photodetector PbS quantum dots ZnO nanoparticles 



柔性和宽波段的光电探测器在可折叠显示、光通信和环境监测等方面有潜在的应用, 因而引起广泛的关注. 本文基于硫化铅量子点和氧化锌纳米颗粒异质结制备了柔性光电探测器. 该器件表现出从紫外光到近红外光的宽波段光电响应性能. 在375 nm紫外光照射下,该器件的电流开关比高达7.08×103. 与单纯的氧化锌纳米颗粒器件相比, 基于异质结的光电探测器的响应度在可见光和近红外光区间增加了三个数量级, 同时维持了器件在紫外光范围内的性能不变. 同时, 基于异质结的器件的响应度和探测率高达4.54 A W−1和3.98×1012 Jones. 此外, 所研制的柔性光电探测器在经过数百次的折叠后, 仍表现出了良好的机械和电学稳定性. 本工作为下一代柔性和宽波段光电子器件的研究做了一个初步探索.



The work was funded by the National Natural Science Foundation of China (U1432249), the National Key R&D Program of China (2017YFA0205002), the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD). This is also a project supported by Collaborative Innovation Center of Suzhou Nano Science & Technology and Joint International Research Laboratory of Carbon-Based Functional Materials and Devices. Wen Z thanks the support from China Postdoctoral Science Foundation (2017M610346) and Natural Science Foundation of Jiangsu Province of China (BK20170343).

Supplementary material

40843_2018_9311_MOESM1_ESM.pdf (3 mb)
High-performance flexible and broadband photodetectors based on PbS quantum dots/ZnO nanoparticles heterostructure


  1. 1.
    Wang X, Shi G. Flexible graphene devices related to energy conversion and storage. Energy Environ Sci, 2015, 8: 790–823CrossRefGoogle Scholar
  2. 2.
    Gong X, Tong M, Xia Y, et al. High-detectivity polymer photodetectors with spectral response from 300 nm to 1450 nm. Science, 2009, 325: 1665–1667CrossRefGoogle Scholar
  3. 3.
    Arnold MS, Zimmerman JD, Renshaw CK, et al. Broad spectral response using carbon nanotube/organic semiconductor/C60 photodetectors. Nano Lett, 2009, 9: 3354–3358CrossRefGoogle Scholar
  4. 4.
    Yoo J, Jeong S, Kim S, et al. A stretchable nanowire UV-Vis-NIR photodetector with high performance. Adv Mater, 2015, 27: 1712–1717CrossRefGoogle Scholar
  5. 5.
    Hu X, Zhang X, Liang L, et al. High-performance flexible broadband photodetector based on organolead halide perovskite. Adv Funct Mater, 2014, 24: 7373–7380CrossRefGoogle Scholar
  6. 6.
    Kang Y, Liu HD, Morse M, et al. Monolithic germanium/silicon avalanche photodiodes with 340 GHz gain–bandwidth product. Nat Photonics, 2009, 3: 59–63CrossRefGoogle Scholar
  7. 7.
    Lou Z, Shen G. Flexible photodetectors based on 1D inorganic nanostructures. Adv Sci, 2016, 3: 1500287CrossRefGoogle Scholar
  8. 8.
    Peng M, Wen Z, Shao M, et al. One-dimensional CdSxSe1−x nanoribbons for high-performance rigid and flexible photodetectors. J Mater Chem C, 2017, 5: 7521–7526CrossRefGoogle Scholar
  9. 9.
    Tamalampudi SR, Lu YY, Kumar U. R, et al. High performance and bendable few-layered InSe photodetectors with broad spectral response. Nano Lett, 2014, 14: 2800–2806CrossRefGoogle Scholar
  10. 10.
    Chen S, Teng C, Zhang M, et al. A flexible UV-Vis-NIR photodetector based on a perovskite/conjugated-polymer composite. Adv Mater, 2016, 28: 5969–5974CrossRefGoogle Scholar
  11. 11.
    Ghezzi D, Antognazza MR, Maccarone R, et al. A polymer optoelectronic interface restores light sensitivity in blind rat retinas. Nat Photonics, 2013, 7: 400–406CrossRefGoogle Scholar
  12. 12.
    Gutruf P, Walia S, Sriram S, et al. Visible-blind UVimaging with oxygen-deficient zinc oxide flexible devices. Adv Electron Mater, 2015, 1: 1500264CrossRefGoogle Scholar
  13. 13.
    Gomathi PT, Sahatiya P, Badhulika S. Large-area, flexible broadband photodetector based on ZnS-MoS2 hybrid on paper substrate. Adv Funct Mater, 2017, 27: 1701611CrossRefGoogle Scholar
  14. 14.
    Wang X, Song W, Liu B, et al. High-performance organic-inorganic hybrid photodetectors based on P3HT:CdSe nanowire heterojunctions on rigid and flexible substrates. Adv Funct Mater, 2013, 23: 1202–1209CrossRefGoogle Scholar
  15. 15.
    Liu YL, Yu CC, Lin KT, et al. Transparent, broadband, flexible, and bifacial-operable photodetectors containing a large-area graphene–gold oxide heterojunction. ACS Nano, 2015, 9: 5093–5103CrossRefGoogle Scholar
  16. 16.
    Gao T, Zhang Q, Chen J, et al. Performance-enhancing broadband and flexible photodetectors based on perovskite/ZnO-nanowire hybrid structures. Adv Opt Mater, 2017, 5: 1700206CrossRefGoogle Scholar
  17. 17.
    Tang J, Sargent EH. Infrared colloidal quantum dots for photovoltaics: fundamentals and recent progress. Adv Mater, 2011, 23: 12–29CrossRefGoogle Scholar
  18. 18.
    Wadia C, Alivisatos AP, Kammen DM. Materials availability expands the opportunity for large-scale photovoltaics deployment. Environ Sci Technol, 2009, 43: 2072–2077CrossRefGoogle Scholar
  19. 19.
    Manders JR, Lai TH, An Y, et al. Low-noise multispectral photodetectors made from all solution-processed inorganic semiconductors. Adv Funct Mater, 2014, 5: 7205–7210Google Scholar
  20. 20.
    Jean J, Chang S, Brown PR, et al. ZnO nanowire arrays for enhanced photocurrent in PbS quantum dot solar cells. Adv Mater, 2013, 25: 2790–2796CrossRefGoogle Scholar
  21. 21.
    Lee JW, Kim DY, Baek S, et al. Inorganic UV-Visible-SWIR broadband photodetector based on monodisperse PbS nanocrystals. Small, 2016, 12: 1328–1333CrossRefGoogle Scholar
  22. 22.
    Luther JM, Gao J, Lloyd MT, et al. Stability assessment on a 3% bilayer PbS/ZnO quantum dot heterojunction solar cell. Adv Mater, 2010, 22: 3704–3707CrossRefGoogle Scholar
  23. 23.
    Pal BN, Robel I, Mohite A, et al. High-sensitivity p-n junction photodiodes based on PbS nanocrystal quantum dots. Adv Funct Mater, 2012, 22: 1741–1748CrossRefGoogle Scholar
  24. 24.
    Lee JW, Kim DY, So F. Unraveling the gain mechanism in high performance solution-processed PbS infrared PIN photodiodes. Adv Funct Mater, 2015, 25: 1233–1238CrossRefGoogle Scholar
  25. 25.
    Sun L. Employing ZnS as a capping material for PbS quantum dots and bulk heterojunction solar cells. Sci China Mater, 2016, 59: 817–824CrossRefGoogle Scholar
  26. 26.
    Jin Z, Zhou Q, Chen Y, et al. Graphdiyne: ZnO nanocomposites for high-performance UVphotodetectors. Adv Mater, 2016, 28: 3697–3702CrossRefGoogle Scholar
  27. 27.
    Xue M, Zhou H, Xu Y, et al. High-performance ultraviolet-visible tunable perovskite photodetector based on solar cell structure. Sci China Mater, 2017, 60: 407–414CrossRefGoogle Scholar
  28. 28.
    Bai S, Wu W, Qin Y, et al. High-performance integrated ZnO nanowire UVsensors on rigid and flexible substrates. Adv Funct Mater, 2011, 21: 4464–4469CrossRefGoogle Scholar
  29. 29.
    De Iacovo A, Venettacci C, Colace L, et al. PbS colloidal quantum dot photodetectors operating in the near infrared. Sci Rep, 2016, 6: 37913CrossRefGoogle Scholar
  30. 30.
    Ren Z, Sun J, Li H, et al. Bilayer PbS quantum dots for highperformance photodetectors. Adv Mater, 2017, 29: 1702055CrossRefGoogle Scholar
  31. 31.
    Gong M, Liu Q, Cook B, et al. All-printable ZnO quantum dots/ graphene van der Waals heterostructures for ultrasensitive detection of ultraviolet light. ACS Nano, 2017, 11: 4114–4123CrossRefGoogle Scholar
  32. 32.
    Osedach TP, Zhao N, Geyer SM, et al. Interfacial recombination for fast operation of a planar organic/QD infrared photodetector. Adv Mater, 2010, 22: 5250–5254CrossRefGoogle Scholar
  33. 33.
    Zheng Z, Gan L, Zhang J, et al. An enhanced UV-Vis-NIR and flexible photodetector based on electrospun ZnO nanowire array/ PbS quantum dots film heterostructure. Adv Sci, 2017, 4: 1600316CrossRefGoogle Scholar
  34. 34.
    Hu C, Dong D, Yang X, et al. Synergistic effect of hybrid PbS quantum dots/2D-WSe2 toward high performance and broadband phototransistors. Adv Funct Mater, 2017, 27: 1603605CrossRefGoogle Scholar
  35. 35.
    Hines MA, Scholes GD. Colloidal PbS nanocrystals with sizetunable near-infrared emission: observation of post-synthesis selfnarrowing of the particle size distribution. Adv Mater, 2003, 15: 1844–1849CrossRefGoogle Scholar
  36. 36.
    Zhang Y, Xu Y, Ford MJ, et al. Thermally stable all-polymer solar cells with high tolerance on blend ratios. Adv Energy Mater, 2018, 270: 1800029CrossRefGoogle Scholar
  37. 37.
    Sun B, Sirringhaus H. Solution-processed zinc oxide field-effect transistors based on self-assembly of colloidal nanorods. Nano Lett, 2005, 5: 2408–2413CrossRefGoogle Scholar
  38. 38.
    Zhou X, Zhang Q, Gan L, et al. High-performance solar-blind deep ultraviolet photodetector based on individual single-crystalline Zn2GeO4 nanowire. Adv Funct Mater, 2016, 26: 704–712CrossRefGoogle Scholar
  39. 39.
    Li QL, Li Y, Gao J, et al. High performance single In2Se3 nanowire photodetector. Appl Phys Lett, 2011, 99: 243105CrossRefGoogle Scholar
  40. 40.
    Kind H, Yan H, Messer B, et al. Nanowire ultraviolet photodetectors and optical switches. Adv Mater, 2002, 14: 158–160CrossRefGoogle Scholar
  41. 41.
    Liu F, Shimotani H, Shang H, et al. High-sensitivity photodetectors based on multilayer GaTe flakes. ACS Nano, 2014, 8: 752–760CrossRefGoogle Scholar
  42. 42.
    Lei S, Ge L, Najmaei S, et al. Evolution of the electronic band structure and efficient photo-detection in atomic layers of InSe. ACS Nano, 2014, 8: 1263–1272CrossRefGoogle Scholar
  43. 43.
    Feng W, Zheng W, Chen XS, et al. Solid-state reaction synthesis of a InSe/CuInSe2 lateral p–n heterojunction and application in high performance optoelectronic devices. Chem Mater, 2015, 27: 983–989CrossRefGoogle Scholar
  44. 44.
    Xie X, Shen G. Single-crystalline In2S3 nanowire-based flexible visible-light photodetectors with an ultra-high photoresponse. Nanoscale, 2015, 7: 5046–5052CrossRefGoogle Scholar
  45. 45.
    Wang Y, Lu K, Han L, et al. In situ passivation for efficient PbS quantum dot solar cells by precursor engineering. Adv Mater, 2018, 30: 1704871CrossRefGoogle Scholar
  46. 46.
    Chen S, Small CE, Amb CM, et al. Inverted polymer solar cells with reduced interface recombination. Adv Energy Mater, 2012, 2: 1333–1337CrossRefGoogle Scholar
  47. 47.
    Prins F, Goodman AJ, Tisdale WA. Reduced dielectric screening and enhanced energy transfer in single- and few-layer MoS2. Nano Lett, 2014, 14: 6087–6091CrossRefGoogle Scholar
  48. 48.
    Barnes WL, Andrew P. Quantum optics: Energy transfer under control. Nature, 1999, 400: 505–506CrossRefGoogle Scholar
  49. 49.
    Tian W, Zhai T, Zhang C, et al. Low-cost fully transparent ultraviolet photodetectors based on electrospun ZnO-SnO2 heterojunction nanofibers. Adv Mater, 2013, 25: 4625–4630CrossRefGoogle Scholar
  50. 50.
    Dao TD, Dang CTT, Han G, et al. Chemically synthesized nanowire TiO2/ZnO core-shell p-n junction array for high sensitivity ultraviolet photodetector. Appl Phys Lett, 2013, 103: 193119CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Mingfa Peng (彭明发)
    • 1
  • Yongjie Wang (汪永杰)
    • 1
  • Qingqing Shen (沈青青)
    • 1
  • Xinkai Xie (谢欣凯)
    • 1
  • Hechuang Zheng (郑和闯)
    • 1
  • Wanli Ma (马万里)
    • 1
  • Zhen Wen (文震)
    • 1
    Email author
  • Xuhui Sun (孙旭辉)
    • 1
    Email author
  1. 1.Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, and Joint International Research Laboratory of Carbon-Based Functional Materials and DevicesSoochow UniversitySuzhouChina

Personalised recommendations