Science China Materials

, Volume 62, Issue 2, pp 173–180 | Cite as

Tailoring electrical property of the low-temperature processed SnO2 for high-performance perovskite solar cells

  • Jing Liu (刘京)
  • Nan Li (李楠)
  • Qingshun Dong (董庆顺)
  • Jiangwei Li (李江伟)
  • Chao Qin (秦超)
  • Liduo Wang (王立铎)Email author


Herein, we for the first time doped Nb5+ into the low-temperature (<100°C) SnO2 sol-gel route to tailor the electrical property of SnO2 layers and the band alignment between SnO2 and the normally used mixed perovskites. The results revealed that proper Nb5+ doping increased the conductivity of the SnO2 electron transport layer (ETL), and the conduction band (CB) level of the SnO2 ETL was shifted down to approach the CB level of perovskites, which facilitated the electron injection from perovskite to SnO2, accelerated the charge transport, and reduced the non-radiative recombination, leading to improved power conversion efficiency from 18.06% to 19.38%. The Nb5+ doping process provided an efficient route for fabricating high-efficiency perovskite solar cells (PSCs) at a temperature lower than 100°C, and promoted the commercialization progress of PSCs.


SnO2 niobium doping band alignment perovskite solar cells photo-stability 



本文中我们首次在低温(<100°C)SnO2溶胶-凝胶中通过掺杂Nb5+调控SnO2电学性质, 使SnO2与混合离子钙钛矿之间形成更匹配的能级. 掺杂Nb5+后SnO2电子传输层导电率明显提升, 导带位置下移更加接近混合离子钙钛矿导带, 有效促进了电子由SnO2向钙钛矿层的注入, 并加速了电子传输过程, 二者的共同作用使非辐射复合几率降低, 器件效率由18.06%提升至19.38%. Nb5+掺杂SnO2为低温(<100°C)制备高效率钙钛矿太阳能电池提供了有效参考途径, 有望进一步推动钙钛矿太阳能电池的产业化进程.



This work was supported by the National Natural Science Foundation of China (51273104 and 91433205).

Supplementary material

40843_2018_9305_MOESM1_ESM.pdf (2.2 mb)
Tailoring Electrical Property of the Low-temperature Processed SnO2 For High-performance Perovskite Solar Cells


  1. 1.
    Correa-Baena JP, Abate A, Saliba M, et al. The rapid evolution of highly efficient perovskite solar cells. Energy Environ Sci, 2017, 10: 710–727CrossRefGoogle Scholar
  2. 2.
    Yun S, Qin Y, Uhl AR, et al. New-generation integrated devices based on dye-sensitized and perovskite solar cells. Energy Environ Sci, 2018, 11: 476–526CrossRefGoogle Scholar
  3. 3.
    Peng J, Chen Y, Zheng K, et al. Insights into charge carrier dynamics in organo-metal halide perovskites: from neat films to solar cells. Chem Soc Rev, 2017, 46: 5714–5729CrossRefGoogle Scholar
  4. 4.
    Polavarapu L, Nickel B, Feldmann J, et al. Advances in quantumconfined perovskite nanocrystals for optoelectronics. Adv Energy Mater, 2017, 7: 1700267CrossRefGoogle Scholar
  5. 5.
    Wang H, Kim DH. Perovskite-based photodetectors: materials and devices. Chem Soc Rev, 2017, 46: 5204–5236CrossRefGoogle Scholar
  6. 6.
    Wang S, Bi C, Yuan J, et al. Original core–shell structure of cubic CsPbBr3@amorphous CsPbBrx perovskite quantum dots with a high blue photoluminescence quantum yield of over 80%. ACS Energy Lett, 2018, 3: 245–251CrossRefGoogle Scholar
  7. 7.
  8. 8.
    Kim HS, Lee CR, Im JH, et al. Lead iodide perovskite sensitized allsolid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci Rep, 2012, 2: 591CrossRefGoogle Scholar
  9. 9.
    Burschka J, Pellet N, Moon SJ, et al. Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature, 2013, 499: 316–319CrossRefGoogle Scholar
  10. 10.
    Liu M, Johnston MB, Snaith HJ. Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature, 2013, 501: 395–398CrossRefGoogle Scholar
  11. 11.
    Yang WS, Park BW, Jung EH, et al. Iodide management in formamidinium-lead-halide–based perovskite layers for efficient solar cells. Science, 2017, 356: 1376–1379CrossRefGoogle Scholar
  12. 12.
    Snaith HJ, Abate A, Ball JM, et al. Anomalous hysteresis in perovskite solar cells. J Phys Chem Lett, 2014, 5: 1511–1515CrossRefGoogle Scholar
  13. 13.
    Kim HS, Park NG. Parameters affectin. I–V hysteresis of CH3 NH3PbI3 perovskite solar cells: effects of perovskite crystal size and mesoporous TiO2 layer. J Phys Chem Lett, 2014, 5: 2927–2934CrossRefGoogle Scholar
  14. 14.
    Unger EL, Hoke ET, Bailie CD, et al. Hysteresis and transient behavior in current–voltage measurements of hybrid-perovskite absorber solar cells. Energy Environ Sci, 2014, 7: 3690–3698CrossRefGoogle Scholar
  15. 15.
    Chen HW, Sakai N, Ikegami M, et al. Emergence of hysteresis and transient ferroelectric response in organo-lead halide perovskite solar cells. J Phys Chem Lett, 2015, 6: 164–169CrossRefGoogle Scholar
  16. 16.
    Leijtens T, Eperon GE, Pathak S, et al. Overcoming ultraviolet light instability of sensitized TiO2 with meso-superstructured organometal tri-halide perovskite solar cells. Nat Commun, 2013, 4: 2885CrossRefGoogle Scholar
  17. 17.
    Guo X, Dong H, Li W, et al. Multifunctional MgO layer in perovskite solar cells. ChemPhysChem, 2015, 16: 1727–1732CrossRefGoogle Scholar
  18. 18.
    Aristidou N, Sanchez-Molina I, Chotchuangchutchaval T, et al. The role of oxygen in the degradation of methylammonium lead trihalide perovskite photoactive layers. Angew Chem Int Ed, 2015, 54: 8208–8212CrossRefGoogle Scholar
  19. 19.
    Snaith HJ, Ducati C. SnO2-based dye-sensitized hybrid solar cells exhibiting near unity absorbed photon-to-electron conversion efficiency. Nano Lett, 2010, 10: 1259–1265CrossRefGoogle Scholar
  20. 20.
    Ke W, Fang G, Liu Q, et al. Low-temperature solution-processed tin oxide as an alternative electron transporting layer for efficient perovskite solar cells. J Am Chem Soc, 2015, 137: 6730–6733CrossRefGoogle Scholar
  21. 21.
    Correa Baena JP, Steier L, Tress W, et al. Highly efficient planar perovskite solar cells through band alignment engineering. Energy Environ Sci, 2015, 8: 2928–2934CrossRefGoogle Scholar
  22. 22.
    Dong Q, Wang M, Zhang Q, et al. Discontinuous SnO2 derived blended-interfacial-layer in mesoscopic perovskite solar cells: Minimizing electron transfer resistance and improving stability. Nano Energy, 2017, 38: 358–367CrossRefGoogle Scholar
  23. 23.
    Dong Q, Xue Y, Wang S, et al. Rational design of SnO2-based electron transport layer in mesoscopic perovskite solar cells: more kinetically favorable than traditional double-layer architecture. Sci China Mater, 2017, 60: 963–976CrossRefGoogle Scholar
  24. 24.
    Jiang Q, Zhang L, Wang H, et al. Enhanced electron extraction using SnO2 for high-efficiency planar-structure HC(NH2)2PbI3-based perovskite solar cells. Nat Energy, 2016, 2: 16177CrossRefGoogle Scholar
  25. 25.
    Anaraki EH, Kermanpur A, Steier L, et al. Highly efficient and stable planar perovskite solar cells by solution-processed tin oxide. Energy Environ Sci, 2016, 9: 3128–3134CrossRefGoogle Scholar
  26. 26.
    Xie J, Huang K, Yu X, et al. Enhanced electronic properties of SnO2 via electron transfer from graphene quantum dots for efficient perovskite solar cells. ACS Nano, 2017, 11: 9176–9182CrossRefGoogle Scholar
  27. 27.
    Dong Q, Shi Y, Zhang C, et al. Energetically favored formation of SnO2 nanocrystals as electron transfer layer in perovskite solar cells with high efficiency exceeding 19%. Nano Energy, 2017, 40: 336–344CrossRefGoogle Scholar
  28. 28.
    Liu D, Li S, Zhang P, et al. Efficient planar heterojunction perovskite solar cells with Li-doped compact TiO2 layer. Nano Energy, 2017, 31: 462–468CrossRefGoogle Scholar
  29. 29.
    Peng J, Duong T, Zhou X, et al. Efficient indium-doped TiOx electron transport layers for high-performance perovskite solar cells and perovskite-silicon tandems. Adv Energy Mater, 2017, 7: 1601768CrossRefGoogle Scholar
  30. 30.
    Yang D, Yang R, Zhang J, et al. High efficiency flexible perovskite solar cells using superior low temperature TiO2. Energy Environ Sci, 2015, 8: 3208–3214CrossRefGoogle Scholar
  31. 31.
    Gao XX, Ge QQ, Xue DJ, et al. Tuning the Fermi-level of TiO2 mesoporous layer by lanthanum doping towards efficient perovskite solar cells. Nanoscale, 2016, 8: 16881–16885CrossRefGoogle Scholar
  32. 32.
    Ren X, Yang D, Yang Z, et al. Solution-processed Nb:SnO2 electron transport layer for efficient planar perovskite solar cells. ACS Appl Mater Interfaces, 2017, 9: 2421–2429CrossRefGoogle Scholar
  33. 33.
    Halvani Anaraki E, Kermanpur A, Mayer MT, et al. Low-temperature Nb-doped SnO2 electron-selective contact yields over 20% efficiency in planar perovskite solar cells. ACS Energy Lett, 2018, 3: 773–778CrossRefGoogle Scholar
  34. 34.
    Xiong L, Qin M, Yang G, et al. Performance enhancement of high temperature SnO2-based planar perovskite solar cells: electrical characterization and understanding of the mechanism. J Mater Chem A, 2016, 4: 8374–8383CrossRefGoogle Scholar
  35. 35.
    Yan J, Wu G, Guan N, et al. Nb2O5/TiO2 heterojunctions: Synthesis strategy and photocatalytic activity. Appl Catal B-Environ, 2014, 152-153: 280–288CrossRefGoogle Scholar
  36. 36.
    Chen BX, Rao HS, Li WG, et al. Achieving high-performance planar perovskite solar cell with Nb-doped TiO2 compact layer by enhanced electron injection and efficient charge extraction. J Mater Chem A, 2016, 4: 5647–5653CrossRefGoogle Scholar
  37. 37.
    Ruiz AM, Dezanneau G, Arbiol J, et al. Insights into the structural and chemical modifications of Nb additive on TiO2 Nanoparticles. Chem Mater, 2004, 16: 862–871CrossRefGoogle Scholar
  38. 38.
    Sun SH, Meng GW, Zhang GX, et al. Raman scattering study of rutile SnO2 nanobelts synthesized by thermal evaporation of Sn powders. Chem Phys Lett, 2003, 376: 103–107CrossRefGoogle Scholar
  39. 39.
    Jesper Jacobsson T, Correa-Baena JP, Pazoki M, et al. Exploration of the compositional space for mixed lead halogen perovskites for high efficiency solar cells. Energy Environ Sci, 2016, 9: 1706–1724CrossRefGoogle Scholar
  40. 40.
    Obrzut J, Page KA. Electrical conductivity and relaxation in poly (3-hexylthiophene). Phys Rev B, 2009, 80: 195211CrossRefGoogle Scholar
  41. 41.
    Yin G, Ma J, Jiang H, et al. Enhancing efficiency and stability of perovskite solar cells through Nb-doping of TiO2 at low temperature. ACS Appl Mater Interfaces, 2017, 9: 10752–10758CrossRefGoogle Scholar
  42. 42.
    Wang Q, Shao Y, Dong Q, et al. Large fill-factor bilayer iodine perovskite solar cells fabricated by a low-temperature solutionprocess. Energy Environ Sci, 2014, 7: 2359–2365CrossRefGoogle Scholar
  43. 43.
    Chen C, Liu D, Zhang B, et al. Carrier interfacial engineering by bismuth modification for efficient and thermoresistant perovskite solar cells. Adv Energy Mater, 2018, 354: 1703659CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Jing Liu (刘京)
    • 1
    • 2
  • Nan Li (李楠)
    • 1
  • Qingshun Dong (董庆顺)
    • 1
  • Jiangwei Li (李江伟)
    • 1
  • Chao Qin (秦超)
    • 2
  • Liduo Wang (王立铎)
    • 1
    Email author
  1. 1.Key Lab of Organic Optoelectronics & Molecular Engineering of Ministry of Education, Department of ChemistryTsinghua UniversityBeijingChina
  2. 2.Key Laboratory of Polyoxometalate Science of Ministry of Education, Department of ChemistryNortheast Normal UniversityChangchunChina

Personalised recommendations