Science China Materials

, Volume 62, Issue 2, pp 181–193 | Cite as

The influence of two-dimensional organic adlayer thickness on the ultralow frequency Raman spectra of transition metal dichalcogenide nanosheets

  • Shiyu Wu (吴诗语)
  • Xiaotong Shi (石晓桐)
  • Yue Liu (刘月)
  • Lin Wang (王琳)
  • Jindong Zhang (张锦东)
  • Weihao Zhao (赵炜昊)
  • Pei Wei (韦培)
  • Wei Huang (黄维)
  • Xiao Huang (黄晓)Email author
  • Hai Li (李海)Email author


Recently, it has been reported that physisorbed adsorbates can be trapped between the bottom surface of two-dimensional (2D) materials and supported substrate to form 2D confined films. However, the influence of such 2D confined adsorbates on the properties of 2D materials is rarely explored. Herein, we combined atomic force microscopy (AFM), Kelvin probe force microscopy (KPFM) and Raman spectroscopy especially the ultralow frequency (ULF) Raman spectroscopy to explore the influence of 2D confined organic adlayer thickness on the ULF breathing modes of few-layer MoS2 and WSe2 nanosheets. As the thickness of organic adlayers increased, red shift, coexistence of blue and red shifts as well as blue shift of ULF breathing mode was observed. KPFM measurement confirmed the enhanced n-doping and p-doping behaviors of organic adlayers as their thickness increased, respectively. Our results will provide new insights into the interaction between 2D confined adsorbates and bottom surface of 2D nanosheets, which could be useful for modulating properties of 2D materials.


two-dimensional organic adlayer adlayer thickness ultralow frequency Raman transition metal dichalcogenides atomic force microscopy 



在二维材料下表面与衬底之间的受限空间中, 物理吸附物如水分子和有机分子等可形成二维吸附层. 然而, 这类吸附层如何影响其上层二维材料的性能尚未被探究. 本文中, 我们结合原子力显微镜、 开尔文力显微镜以及超低波拉曼光谱仪来探究有机分子吸附层对其上的少层二硫化钼及二硒化钨纳米薄片性质的影响. 随吸附层厚度增加, 纳米薄片的超低波呼吸模式拉曼峰发生红移、 红移和蓝移共存以及仅有蓝移的现象. 此外, 纳米薄片的掺杂程度也逐渐增强. 理解有机分子吸附层与二维材料下表面之间的相互作用, 有望对二维材料性质的调节提供帮助.



This work was supported by the National Natural Science Foundation of China (21571101 and 51322202), the Natural Science Foundation of Jiangsu Province in China (BK20161543 and BK20130927), the Joint Research Fund for Overseas Chinese, Hong Kong and Macao Scholars (51528201), and the Natural Science Foundation of Jiangsu Higher Education Institutions of China (15KJB430016).

Supplementary material

40843_2018_9303_MOESM1_ESM.pdf (2.9 mb)
The influence of two-dimensional organic adlayer thickness on the ultralow frequency Raman spectra of transition metal dichalcogenide nanosheets


  1. 1.
    Balog R, Jørgensen B, Nilsson L, et al. Bandgap opening in graphene induced by patterned hydrogen adsorption. Nat Mater, 2010, 9: 315–319CrossRefGoogle Scholar
  2. 2.
    Kozlov SM, Viñes F, Görling A. Bandgap engineering of graphene by physisorbed adsorbates. Adv Mater, 2011, 23: 2638–2643CrossRefGoogle Scholar
  3. 3.
    Cao P, Varghese JO, Xu K, et al. Visualizing local doping effects of individual water clusters on gold(111)-supported graphene. Nano Lett, 2012, 12: 1459–1463CrossRefGoogle Scholar
  4. 4.
    Fang H, Chuang S, Chang TC, et al. High-performance single layered WSe2 p-FETs with chemically doped contacts. Nano Lett, 2012, 12: 3788–3792CrossRefGoogle Scholar
  5. 5.
    Fang H, Tosun M, Seol G, et al. Degenerate n-doping of few-layer transition metal dichalcogenides by potassium. Nano Lett, 2013, 13: 1991–1995CrossRefGoogle Scholar
  6. 6.
    Goncher SJ, Zhao L, Pasupathy AN, et al. Substrate level control of the local doping in graphene. Nano Lett, 2013, 13: 1386–1392CrossRefGoogle Scholar
  7. 7.
    Mouri S, Miyauchi Y, Matsuda K. Tunable photoluminescence of monolayer MoS2via chemical doping. Nano Lett, 2013, 13: 5944–5948CrossRefGoogle Scholar
  8. 8.
    Tongay S, Zhou J, Ataca C, et al. Broad-range modulation of light emission in two-dimensional semiconductors by molecular physisorption gating. Nano Lett, 2013, 13: 2831–2836CrossRefGoogle Scholar
  9. 9.
    Dhakal KP, Duong DL, Lee J, et al. Confocal absorption spectral imaging of MoS2: optical transitions depending on the atomic thickness of intrinsic and chemically doped MoS2. Nanoscale, 2014, 6: 13028–13035CrossRefGoogle Scholar
  10. 10.
    Kiriya D, Tosun M, Zhao P, et al. Air-stable surface charge transfer doping of MoS2 by benzyl viologen. J Am Chem Soc, 2014, 136: 7853–7856CrossRefGoogle Scholar
  11. 11.
    Yang L, Majumdar K, Liu H, et al. Chloride molecular doping technique on 2D materials: WS2 and MoS2. Nano Lett, 2014, 14: 6275–6280CrossRefGoogle Scholar
  12. 12.
    Zhao P, Kiriya D, Azcatl A, et al. Air stable p-doping of WSe2 by covalent functionalization. ACS Nano, 2014, 8: 10808–10814CrossRefGoogle Scholar
  13. 13.
    Andleeb S, Kumar Singh A, Eom J. Chemical doping of MoS2 multilayer by p-toluene sulfonic acid. Sci Tech Adv Mater, 2015, 16: 035009CrossRefGoogle Scholar
  14. 14.
    Jing Y, Tang Q, He P, et al. Small molecules make big differences: molecular doping effects on electronic and optical properties of phosphorene. Nanotechnology, 2015, 26: 095201CrossRefGoogle Scholar
  15. 15.
    Cai Y, Zhou H, Zhang G, et al. Modulating carrier density and transport properties of MoS2 by organic molecular doping and defect engineering. Chem Mater, 2016, 28: 8611–8621CrossRefGoogle Scholar
  16. 16.
    Choi J, Zhang H, Du H, et al. Understanding solvent effects on the properties of two-dimensional transition metal dichalcogenides. ACS Appl Mater Interfaces, 2016, 8: 8864–8869CrossRefGoogle Scholar
  17. 17.
    Singh D, Gupta SK, Sonvane Y, et al. Modulating the electronic and optical properties of monolayer arsenene phases by organic molecular doping. Nanotechnology, 2017, 28: 495202CrossRefGoogle Scholar
  18. 18.
    Li L, Pi LJ, Li HQ, et al. Photodetectors based on two-dimensional semiconductors: Progress, opportunity and challenge. Chin Sci Bull, 2017, 62: 3134–3153CrossRefGoogle Scholar
  19. 19.
    Huang Y, Zhuge F, Hou J, et al. Van der Waals coupled organic molecules with monolayer MoS2 for fast response photodetectors with gate-tunable responsivity. ACS Nano, 2018, 12: 4062–4073CrossRefGoogle Scholar
  20. 20.
    Kufer D, Konstantatos G. Highly sensitive, encapsulated MoS2 photodetector with gate controllable gain and speed. Nano Lett, 2015, 15: 7307–7313CrossRefGoogle Scholar
  21. 21.
    Zhang W, Huang JK, Chen CH, et al. High-gain phototransistors based on a CVD MoS2 monolayer. Adv Mater, 2013, 25: 3456–3461CrossRefGoogle Scholar
  22. 22.
    Lin JD, Han C, Wang F, et al. Electron-doping-enhanced trion formation in monolayer molybdenum disulfide functionalized with cesium carbonate. ACS Nano, 2014, 8: 5323–5329CrossRefGoogle Scholar
  23. 23.
    Xu K, Cao P, Heath JR. Graphene visualizes the first water adlayers on mica at ambient conditions. Science, 2010, 329: 1188–1191CrossRefGoogle Scholar
  24. 24.
    Cao P, Xu K, Varghese JO, et al. Atomic force microscopy characterization of room-temperature adlayers of small organic molecules through graphene templating. J Am Chem Soc, 2011, 133: 2334–2337CrossRefGoogle Scholar
  25. 25.
    Komurasaki H, Tsukamoto T, Yamazaki K, et al. Layered structures of interfacial water and their effects on Raman spectra in graphene-on-sapphire systems. J Phys Chem C, 2012, 116: 10084–10089CrossRefGoogle Scholar
  26. 26.
    Lee MJ, Choi JS, Kim JS, et al. Characteristics and effects of diffused water between graphene and a SiO2 substrate. Nano Res, 2012, 5: 710–717CrossRefGoogle Scholar
  27. 27.
    Shim J, Lui CH, Ko TY, et al. Water-gated charge doping of graphene induced by mica substrates. Nano Lett, 2012, 12: 648–654CrossRefGoogle Scholar
  28. 28.
    Chen S, Li H, Cao P, et al. Understanding liquid–solid-like behavior of tetrahydrofuran adlayers at room temperature between graphene and mica: a Born–Oppenheimer molecular dynamics study. J Phys Chem C, 2013, 117: 21894–21900CrossRefGoogle Scholar
  29. 29.
    Varghese JO, Agbo P, Sutherland AM, et al. The influence of water on the optical properties of single-layer molybdenum disulfide. Adv Mater, 2015, 27: 2734–2740CrossRefGoogle Scholar
  30. 30.
    Lee DE, Ahn G, Ryu S. Two-dimensional water diffusion at a graphene–silica interface. J Am Chem Soc, 2014, 136: 6634–6642CrossRefGoogle Scholar
  31. 31.
    Zhang Q, Peng B, Chan PKL, et al. A pentacene monolayer trapped between graphene and a substrate. Nanoscale, 2015, 7: 14663–14668CrossRefGoogle Scholar
  32. 32.
    Bampoulis P, Witteveen JP, Kooij ES, et al. Structure and dynamics of confined alcohol–water mixtures. ACS Nano, 2016, 10: 6762–6768CrossRefGoogle Scholar
  33. 33.
    Voïtchovsky K, Giofrè D, José Segura J, et al. Thermally-nucleated self-assembly of water and alcohol into stable structures at hydrophobic interfaces. Nat Commun, 2016, 7: 13064CrossRefGoogle Scholar
  34. 34.
    Mak KF, He K, Lee C, et al. Tightly bound trions in monolayer MoS2. Nat Mater, 2012, 12: 207–211CrossRefGoogle Scholar
  35. 35.
    Guo W, Cheng C, Wu Y, et al. Bio-inspired two-dimensional nanofluidic generators based on a layered graphene hydrogel membrane. Adv Mater, 2013, 25: 6064–6068CrossRefGoogle Scholar
  36. 36.
    Guo W, Jiang L. Two-dimensional ion channel based soft-matter piezoelectricity. Sci China Mater, 2014, 57: 2–6CrossRefGoogle Scholar
  37. 37.
    Gao J, Feng Y, Guo W, et al. Nanofluidics in two-dimensional layered materials: inspirations from nature. Chem Soc Rev, 2017, 46: 5400–5424CrossRefGoogle Scholar
  38. 38.
    Ji J, Kang Q, Zhou Y, et al. Osmotic power generation with positively and negatively charged 2D nanofluidic membrane pairs. Adv Funct Mater, 2016, 27: 1603623CrossRefGoogle Scholar
  39. 39.
    Cheng H, Zhou Y, Feng Y, et al. Electrokinetic energy conversion in self-assembled 2D nanofluidic channels with janus nanobuilding blocks. Adv Mater, 2017, 29: 1700177CrossRefGoogle Scholar
  40. 40.
    Wang L, Feng Y, Zhou Y, et al. Photo-switchable two-dimensional nanofluidic ionic diodes. Chem Sci, 2017, 8: 4381–4386CrossRefGoogle Scholar
  41. 41.
    Feng Y, Zhang K, Li H, et al. In situ visualization and detection of surface potential variation of mono and multilayer MoS2 under different humidities using Kelvin probe force microscopy. Nanotechnology, 2017, 28: 295705CrossRefGoogle Scholar
  42. 42.
    Li Y, Xu CY, Hu PA, et al. Carrier control of MoS2 nanoflakes by functional self-assembled monolayers. ACS Nano, 2013, 7: 7795–7804CrossRefGoogle Scholar
  43. 43.
    Rice C, Young RJ, Zan R, et al. Raman-scattering measurements and first-principles calculations of strain-induced phonon shifts in monolayer MoS2. Phys Rev B, 2013, 87: 081307CrossRefGoogle Scholar
  44. 44.
    Lin H, Schilo A, Kamoka AR, et al. Insight into the wetting of a graphene-mica slit pore with a monolayer of water. Phys Rev B, 2017, 95: 195414CrossRefGoogle Scholar
  45. 45.
    Buscema M, Steele GA, van der Zant HSJ, et al. The effect of the substrate on the Raman and photoluminescence emission of single-layer MoS2. Nano Res, 2014, 7: 561–571CrossRefGoogle Scholar
  46. 46.
    Yu Y, Yu Y, Xu C, et al. Engineering substrate interactions for high luminescence efficiency of transition-metal dichalcogenide monolayers. Adv Funct Mater, 2016, 26: 4733–4739CrossRefGoogle Scholar
  47. 47.
    Li H, Wu JB, Ran F, et al. Interfacial interactions in van der Waals heterostructures of MoS2 and graphene. ACS Nano, 2017, 11: 11714–11723CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Shiyu Wu (吴诗语)
    • 1
  • Xiaotong Shi (石晓桐)
    • 1
  • Yue Liu (刘月)
    • 1
  • Lin Wang (王琳)
    • 1
  • Jindong Zhang (张锦东)
    • 1
  • Weihao Zhao (赵炜昊)
    • 1
  • Pei Wei (韦培)
    • 1
  • Wei Huang (黄维)
    • 1
    • 2
  • Xiao Huang (黄晓)
    • 1
    Email author
  • Hai Li (李海)
    • 1
    Email author
  1. 1.Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)Nanjing Tech University (NanjingTech)NanjingChina
  2. 2.Shaanxi Institute of Flexible Electronics (SIFE)Northwestern Polytechnical University (NPU)Xi’anChina

Personalised recommendations