Advertisement

Science China Materials

, Volume 62, Issue 2, pp 236–244 | Cite as

Directional transport of centimeter-scale object on anisotropic microcilia surface under water

  • Yuefeng Wang (王岳峰)
  • Xiaodong Chen (陈晓东)
  • Kang Sun (孙康)
  • Ke Li (李珂)
  • Feilong Zhang (张飞龙)
  • Bing Dai (代兵)
  • Jun Shen (沈俊)
  • Guoqing Hu (胡国庆)
  • Shutao Wang (王树涛)Email author
Articles
  • 160 Downloads

Abstract

Natural organisms such as cactus spines or trachea cilia have unique directional transport ability, owing to their anisotropic surface structures or asymmetric motion. However, most artificial interfacial materials are incapable of transporting macroscale object underwater. Herein, we report that anisotropic microcilia arrays, composed of cobalt fine powder and PDMS, can successfully transport the centimeter-scale hydrogel underwater by periodically asymmetric stroke under alternative magnetic field. Reciprocal collective stroke of anisotropic microcilia can generate directional flow, propelling the centimeter-scale hydrogel slice forward. Accompanying computational simulation results are consistent with the directional transport behaviors observed in our experiments. This study provides a clue to design artificial anisotropic interfacial materials with capability of transporting macroscale object at low Reynolds number.

Keywords

macro-object transport anisotropic surface artificial micro-cilia arrays 

水下各向异性人造纤毛表面实现厘米尺度的块体输运

摘要

很多自然生物组织, 如猪笼草或气管纤毛, 由于具有各向异性结构或者能够不对称摆动, 而呈现出独特的定向输运功能. 但是大多仿生材料并不能在水下对宏观物体进行输运. 在这里, 我们报道了一种具有各向异性的磁响应性纤毛结构, 能够通过其周期性的不对称摆动,在水下驱动厘米尺度水凝胶. 在进一步的实验中, 我们观察到这种纤毛阵列的协同摆动能够产生液体的定向流动, 从而推动凝胶片向前运动. 同时, 相关的模拟证实了实验结果. 这种能够在水下进行定向物体输运的人造纤毛结构将在微流控、生物工程等领域中发挥重要作用.

Notes

Acknowledgements

This work is supported by the National Natural Science Foundation of China (21425314, 21434009, 21421061, 11402274 and 11772343), the Program for Changjiang Scholars and the Top- Notch Young Talents Program of China.

Supplementary material

40843_2018_9302_MOESM1_ESM.pdf (1.9 mb)
Directional Transport of Centi-scale Object on Anisotropic Microcilia Surface Under Water

References

  1. 1.
    Autumn K, Peattie AM. Mechanisms of adhesion in geckos. Integrative Comp Biol, 2002, 42: 1081–1090CrossRefGoogle Scholar
  2. 2.
    Yoshioka S, Kinoshita S. Wavelength-selective and anisotropic light-diffusing scale on the wing of the Morpho butterfly. Proc R Soc B-Biol Sci, 2004, 271: 581–587CrossRefGoogle Scholar
  3. 3.
    Ju J, Bai H, Zheng Y, et al. A multi-structural and multi-functional integrated fog collection system in cactus. Nat Commun, 2012, 3: 1247CrossRefGoogle Scholar
  4. 4.
    Chen H, Zhang P, Zhang L, et al. Continuous directional water transport on the peristome surface of Nepenthes alata. Nature, 2016, 532: 85–89CrossRefGoogle Scholar
  5. 5.
    Xia D, He X, Jiang YB, et al. Tailoring anisotropic wetting properties on submicrometer-scale periodic grooved surfaces. Langmuir, 2010, 26: 2700–2706CrossRefGoogle Scholar
  6. 6.
    Sandre O, Gorre-Talini L, Ajdari A, et al. Moving droplets on asymmetrically structured surfaces. Phys Rev E, 1999, 60: 2964–2972CrossRefGoogle Scholar
  7. 7.
    Liu C, Ju J, Ma J, et al. Directional drop transport achieved on high-temperature anisotropic wetting surfaces. Adv Mater, 2014, 26: 6086–6091CrossRefGoogle Scholar
  8. 8.
    Chu KH, Xiao R, Wang EN. Uni-directional liquid spreading on asymmetric nanostructured surfaces. Nat Mater, 2010, 9: 413–417CrossRefGoogle Scholar
  9. 9.
    Cao M, Jin X, Peng Y, et al. Unidirectional wetting properties on multi-bioinspired magnetocontrollable slippery microcilia. Adv Mater, 2017, 29: 1606869CrossRefGoogle Scholar
  10. 10.
    Malvadkar NA, Hancock MJ, Sekeroglu K, et al. An engineered anisotropic nanofilm with unidirectional wetting properties. Nat Mater, 2010, 9: 1023–1028CrossRefGoogle Scholar
  11. 11.
    Mast SO. The food-vacuole in paramecium. Biol Bull, 1947, 92: 31–72CrossRefGoogle Scholar
  12. 12.
    Dauer DM, Ewing RM. Functional-morphology and feeding-behavior of malacoceros-indicus (polychaeta, spionidae). Bull Mar Sci, 1991, 48: 395–400Google Scholar
  13. 13.
    Fahy JV, Dickey BF. Airway mucus function and dysfunction. N Engl J Med, 2010, 363: 2233–2247CrossRefGoogle Scholar
  14. 14.
    Button B, Cai LH, Ehre C, et al. A periciliary brush promotes the lung health by separating the mucus layer from airway epithelia. Science, 2012, 337: 937–941CrossRefGoogle Scholar
  15. 15.
    Sawamoto K, Wichterle H, Gonzalez-Perez O, et al. New neurons follow the flow of cerebrospinal fluid in the adult brain. Science, 2006, 311: 629–632CrossRefGoogle Scholar
  16. 16.
    Cheng C, Weissmüller J, Ngan AHW. Fast and reversible actuation of metallic muscles composed of nickel nanowire-forest. Adv Mater, 2016, 28: 5315–5321CrossRefGoogle Scholar
  17. 17.
    Kim O, Shin TJ, Park MJ. Fast low-voltage electroactive actuators using nanostructured polymer electrolytes. Nat Commun, 2013, 4: 2208CrossRefGoogle Scholar
  18. 18.
    Shields AR, Fiser BL, Evans BA, et al. Biomimetic cilia arrays generate simultaneous pumping and mixing regimes. Proc Natl Acad Sci USA, 2010, 107: 15670–15675CrossRefGoogle Scholar
  19. 19.
    Zhou B, Xu W, Syed AA, et al. Design and fabrication of magnetically functionalized flexible micropillar arrays for rapid and controllable microfluidic mixing. Lab Chip, 2015, 15: 2125–2132CrossRefGoogle Scholar
  20. 20.
    Wang Y, Gao Y, Wyss HM, et al. Artificial cilia fabricated using magnetic fiber drawing generate substantial fluid flow. Microfluid Nanofluid, 2015, 18: 167–174CrossRefGoogle Scholar
  21. 21.
    Belardi J, Schorr N, Prucker O, et al. Artificial cilia: generation of magnetic actuators in microfluidic systems. Adv Funct Mater, 2011, 21: 3314–3320CrossRefGoogle Scholar
  22. 22.
    Hu W, Lum GZ, Mastrangeli M, et al. Small-scale soft-bodied robot with multimodal locomotion. Nature, 2018, 554: 81–85CrossRefGoogle Scholar
  23. 23.
    Sidorenko A, Krupenkin T, Taylor A, et al. Reversible switching of hydrogel-actuated nanostructures into complex micropatterns. Science, 2007, 315: 487–490CrossRefGoogle Scholar
  24. 24.
    Zarzar LD, Kim P, Aizenberg J. Bio-inspired design of submerged hydrogel-actuated polymer microstructures operating in response to pH. Adv Mater, 2011, 23: 1442–1446CrossRefGoogle Scholar
  25. 25.
    He X, Aizenberg M, Kuksenok O, et al. Synthetic homeostatic materials with chemo-mechano-chemical self-regulation. Nature, 2012, 487: 214–218CrossRefGoogle Scholar
  26. 26.
    Shastri A, McGregor LM, Liu Y, et al. An aptamer-functionalized chemomechanically modulated biomolecule catch-and-release system. Nat Chem, 2015, 7: 447–454CrossRefGoogle Scholar
  27. 27.
    van Oosten CL, Bastiaansen CWM, Broer DJ. Printed artificial cilia from liquid-crystal network actuators modularly driven by light. Nat Mater, 2009, 8: 677–682CrossRefGoogle Scholar
  28. 28.
    Mahadevan L, Daniel S, Chaudhury MK. Biomimetic ratcheting motion of a soft, slender, sessile gel. Proc Natl Acad Sci USA, 2004, 101: 23–26CrossRefGoogle Scholar
  29. 29.
    Gelebart AH, Mc Bride M, Schenning APHJ, et al. Photoresponsive fiber array: toward mimicking the collective motion of cilia for transport applications. Adv Funct Mater, 2016, 26: 5322–5327CrossRefGoogle Scholar
  30. 30.
    Wang Y, Gao Y, Wyss H, et al. Out of the cleanroom, self-assembled magnetic artificial cilia. Lab Chip, 2013, 13: 3360CrossRefGoogle Scholar
  31. 31.
    Vilfan M, Potocnik A, Kavcic B, et al. Self-assembled artificial cilia. Proc Natl Acad Sci USA, 2010, 107: 1844–1847CrossRefGoogle Scholar
  32. 32.
    Drotlef DM, Blümler P, del Campo A. Magnetically actuated patterns for bioinspired reversible adhesion (dry and wet). Adv Mater, 2014, 26: 775–779CrossRefGoogle Scholar
  33. 33.
    Drotlef DM, Blümler P, Papadopoulos P, et al. Magnetically actuated micropatterns for switchable wettability. ACS Appl Mater Interfaces, 2014, 6: 8702–8707CrossRefGoogle Scholar
  34. 34.
    Li K, Ju J, Xue Z, et al. Structured cone arrays for continuous and effective collection of micron-sized oil droplets from water. Nat Commun, 2013, 4: 2276CrossRefGoogle Scholar
  35. 35.
    Xue L, Iturri J, Kappl M, et al. Bioinspired orientation-dependent friction. Langmuir, 2014, 30: 11175–11182CrossRefGoogle Scholar
  36. 36.
    Jin K, Cremaldi JC, Erickson JS, et al. Biomimetic bidirectional switchable adhesive inspired by the gecko. Adv Funct Mater, 2014, 24: 574–579CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Yuefeng Wang (王岳峰)
    • 1
    • 6
  • Xiaodong Chen (陈晓东)
    • 2
    • 6
  • Kang Sun (孙康)
    • 3
  • Ke Li (李珂)
    • 4
    • 6
  • Feilong Zhang (张飞龙)
    • 5
    • 6
  • Bing Dai (代兵)
    • 1
    • 6
  • Jun Shen (沈俊)
    • 4
    • 6
  • Guoqing Hu (胡国庆)
    • 2
    • 6
  • Shutao Wang (王树涛)
    • 1
    • 6
    Email author
  1. 1.CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, CAS Center for Excellence in Nanoscience, Technical Institute of Physics and ChemistryChinese Academy of SciencesBeijingChina
  2. 2.The State Key Laboratory of Nonlinear Mechanics, Institute of MechanicsChinese Academy of SciencesBeijingChina
  3. 3.School of Engineering, Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical InstrumentsSun Yat-sen UniversityGuangzhouChina
  4. 4.Technical Institute of Physics and ChemistryChinese Academy of SciencesBeijingChina
  5. 5.Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Green Printing, Institute of ChemistryChinese Academy of SciencesBeijingChina
  6. 6.University of Chinese Academy of SciencesBeijingChina

Personalised recommendations