Science China Materials

, Volume 62, Issue 1, pp 1–7 | Cite as

Functional molecular electronic devices through environmental control

  • Dingkai Su (苏鼎凯)
  • Chunhui Gu (顾春晖)
  • Xuefeng Guo (郭雪峰)



为了满足传统硅基电子器件日益微型化的需求, 科学家们前瞻性地提出了将单个分子或者分子聚集体夹在电极之间制备分子电子器件的前沿研究方向. 分子电子器件功能化的实现需要从分子工程、 界面工程以及材料工程的角度综合考虑. 本文总结了近期利用外界环境来调控分子电子器件功能的最新进展. 鉴于化学刺激所引起的显著效果, 作者展望了分子电子器件在单分子化学反应动力学中的应用前景以及未来的发展方向.



We acknowledge primary financial supports from the National Key R&D Program of China (2017YFA0204901), the National Natural Science Foundation of China (21727806) and the Natural Science Foundation of Beijing (Z181100004418003).


  1. 1.
    Xiang D, Wang X, Jia C, et al. Molecular-scale electronics: from concept to function. Chem Rev, 2016, 116: 4318–4440CrossRefGoogle Scholar
  2. 2.
    Aviram A, Ratner MA. Molecular rectifiers. Chem Phys Lett, 1974, 29: 277–283CrossRefGoogle Scholar
  3. 3.
    Reed MA. Conductance of a molecular junction. Science, 1997, 278: 252–254CrossRefGoogle Scholar
  4. 4.
    Elbing M, Ochs R, Koentopp M, et al. A single-molecule diode. Proc Natl Acad Sci USA, 2005, 102: 8815–8820CrossRefGoogle Scholar
  5. 5.
    Park J, Pasupathy AN, Goldsmith JI, et al. Coulomb blockade and the Kondo effect in single-atom transistors. Nature, 2002, 417: 722–725CrossRefGoogle Scholar
  6. 6.
    Xu B, Tao NJ. Measurement of single-molecule resistance by repeated formation of molecular junctions. Science, 2003, 301: 1221–1223CrossRefGoogle Scholar
  7. 7.
    Cao Y, Dong S, Liu S, et al. Building high-throughput molecular junctions using indented graphene point contacts. Angew Chem Int Ed, 2012, 51: 12228–12232CrossRefGoogle Scholar
  8. 8.
    Díez-Pérez I, Hihath J, Lee Y, et al. Rectification and stability of a single molecular diode with controlled orientation. Nat Chem, 2009, 1: 635–641CrossRefGoogle Scholar
  9. 9.
    Song H, Kim Y, Jang YH, et al. Observation of molecular orbital gating. Nature, 2009, 462: 1039–1043CrossRefGoogle Scholar
  10. 10.
    Su TA, Li H, Steigerwald ML, et al. Stereoelectronic switching in single-molecule junctions. Nat Chem, 2015, 7: 215–220CrossRefGoogle Scholar
  11. 11.
    Green JE, Wook Choi J, Boukai A, et al. A 160-kilobit molecular electronic memory patterned at 1011 bits per square centimetre. Nature, 2007, 445: 414–417CrossRefGoogle Scholar
  12. 12.
    Guo C, Wang K, Zerah-Harush E, et al. Molecular rectifier composed of DNA with high rectification ratio enabled by intercalation. Nat Chem, 2016, 8: 484–490CrossRefGoogle Scholar
  13. 13.
    Ismael AK, Wang K, Vezzoli A, et al. Side-group-mediated mechanical conductance switching in molecular junctions. Angew Chem Int Ed, 2017, 56: 15378–15382CrossRefGoogle Scholar
  14. 14.
    Jia C, Guo X. Molecule–electrode interfaces in molecular electronic devices. Chem Soc Rev, 2013, 42: 5642–5660CrossRefGoogle Scholar
  15. 15.
    Guo X, Small JP, Klare JE, et al. Covalently bridging gaps in singlewalled carbon nanotubes with conducting molecules. Science, 2006, 311: 356–359CrossRefGoogle Scholar
  16. 16.
    Gu C, Su D, Jia C, et al. Building nanogapped graphene electrode arrays by electroburning. RSC Adv, 2018, 8: 6814–6819CrossRefGoogle Scholar
  17. 17.
    Kim T, Liu ZF, Lee C, et al. Charge transport and rectification in molecular junctions formed with carbon-based electrodes. Proc Natl Acad Sci USA, 2014, 111: 10928–10932CrossRefGoogle Scholar
  18. 18.
    Jia C, Ma B, Xin N, et al. Carbon electrode–molecule junctions: a reliable platform for molecular electronics. Acc Chem Res, 2015, 48: 2565–2575CrossRefGoogle Scholar
  19. 19.
    Kim WY, Kim KS. Tuning molecular orbitals in molecular electronics and spintronics. Acc Chem Res, 2010, 43: 111–120CrossRefGoogle Scholar
  20. 20.
    Wen J, Tian Z, Ma J. Light- and electric-field-induced switching of thiolated azobenzene self-assembled monolayer. J Phys Chem C, 2013, 117: 19934–19944CrossRefGoogle Scholar
  21. 21.
    Pourhossein P, Vijayaraghavan RK, Meskers SCJ, et al. Optical modulation of nano-gap tunnelling junctions comprising self-assembled monolayers of hemicyanine dyes. Nat Commun, 2016, 7: 11749CrossRefGoogle Scholar
  22. 22.
    Fung ED, Adak O, Lovat G, et al. Too hot for photon-assisted transport: hot-electrons dominate conductance enhancement in illuminated single-molecule junctions. Nano Lett, 2017, 17: 1255–1261CrossRefGoogle Scholar
  23. 23.
    Zhou J, Wang K, Xu B, et al. Photoconductance from exciton binding in molecular junctions. J Am Chem Soc, 2018, 140: 70–73CrossRefGoogle Scholar
  24. 24.
    Jia C, Migliore A, Xin N, et al. Covalently bonded single-molecule junctions with stable and reversible photoswitched conductivity. Science, 2016, 352: 1443–1445CrossRefGoogle Scholar
  25. 25.
    Atesci H, Kaliginedi V, Celis Gil JA, et al. Humidity-controlled rectification switching in ruthenium-complex molecular junctions. Nat Nanotechnol, 2018, 13: 117–121CrossRefGoogle Scholar
  26. 26.
    Barber JR, Yoon HJ, Bowers CM, et al. Influence of environment on the measurement of rates of charge transport across AgTS/SAM//Ga2O3/EGaIn Junctions. Chem Mater, 2014, 26: 3938–3947CrossRefGoogle Scholar
  27. 27.
    Capozzi B, Xia J, Adak O, et al. Single-molecule diodes with high rectification ratios through environmental control. Nat Nanotechnol, 2015, 10: 522–527CrossRefGoogle Scholar
  28. 28.
    Morales GM, Jiang P, Yuan S, et al. Inversion of the rectifying effect in diblock molecular diodes by protonation. J Am Chem Soc, 2005, 127: 10456–10457CrossRefGoogle Scholar
  29. 29.
    Lo WY, Zhang N, Cai Z, et al. Beyond molecular wires: design molecular electronic functions based on dipolar effect. Acc Chem Res, 2016, 49: 1852–1863CrossRefGoogle Scholar
  30. 30.
    Gu C, Jia C, Guo X. Single-molecule electrical detection with realtime label-free capability and ultrasensitivity. Small Methods, 2017, 1: 1700071CrossRefGoogle Scholar
  31. 31.
    Guan J, Jia C, Li Y, et al. Direct single-molecule dynamic detection of chemical reactions. Sci Adv, 2018, 4: eaar2177CrossRefGoogle Scholar
  32. 32.
    Zhou C, Li X, Gong Z, et al. Direct observation of single-molecule hydrogen-bond dynamics with single-bond resolution. Nat Commun, 2018, 9: 807CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Dingkai Su (苏鼎凯)
    • 1
  • Chunhui Gu (顾春晖)
    • 1
  • Xuefeng Guo (郭雪峰)
    • 1
  1. 1.Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular EngineeringPeking UniversityBeijingChina

Personalised recommendations