Science China Materials

, Volume 62, Issue 1, pp 54–58 | Cite as

A low-temperature solution-processed copper antimony iodide rudorffite for solar cells

  • Xue Jia (贾雪)
  • Liming Ding (丁黎明)Email author


A copper antimony iodide rudorffite, Cu3SbI6, was first prepared by using a low-temperature solution-processing approach. Its film absorbs 320–520 nm light and has an indirect bandgap of 2.43 eV. Solar cells with a structure of ITO/PEDOT:PSS/Cu3SbI6/PC61BM/Al were made, giving a power conversion efficiency of 0.50% and a fill factor of 67.09%.


copper antimony iodide rudorffite low-temperature solution-processing solar cells 



本文运用低温溶液法首次制备了一种铜锑碘化合物Cu3SbI6, 其薄膜可以吸收波长为320–520 nm的光, 具有2.43 eV 的间接带隙. 以其作为吸光层制备了结构为ITO/PEDOT:PSS/Cu3SbI6/PC61BM/Al的太阳电池, 能量转换效率为0.50%, 填充因子为67.09%.



We greatly appreciate the National Natural Science Foundation of China (U1401244, 51773045, 21572041, 21772030, 51503050 and 21704021) and the National Key Research and Development Program of China (2017YFA0206600) for financial support.

Supplementary material

40843_2018_9300_MOESM1_ESM.pdf (608 kb)
A low-temperature solution-processed copper antimony iodide Rudorffite for solar cells


  1. 1.
    Kojima A, Teshima K, Shirai Y, et al. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J Am Chem Soc, 2009, 131: 6050–6051CrossRefGoogle Scholar
  2. 2.
    Zuo C, Ding L. An 80.11% FF record achieved for perovskite solar cells by using the NH4Cl additive. Nanoscale, 2014, 6: 9935–9938CrossRefGoogle Scholar
  3. 3.
    Fakharuddin A, Schmidt-Mende L, Garcia-Belmonte G, et al. Interfaces in perovskite solar cells. Adv Energy Mater, 2017, 7: 1700623CrossRefGoogle Scholar
  4. 4.
    Zuo C, Ding L. Modified PEDOT layer makes a 1.52 V Voc for perovskite/PCBM solar cells. Adv Energy Mater, 2017, 7: 1601193CrossRefGoogle Scholar
  5. 5.
    Eperon GE, Hörantner MT, Snaith HJ. Metal halide perovskite tandem and multiple-junction photovoltaics. Nat Rev Chem, 2017, 1: 0095CrossRefGoogle Scholar
  6. 6.
    Zuo C, Vak D, Angmo D, et al. One-step roll-to-roll air processed high efficiency perovskite solar cells. Nano Energy, 2018, 46: 185–192CrossRefGoogle Scholar
  7. 7.
  8. 8.
    Zuo C, Bolink HJ, Han H, et al. Advances in perovskite solar cells. Adv Sci, 2016, 3: 1500324CrossRefGoogle Scholar
  9. 9.
    Jeon T, Kim SJ, Yoon J, et al. Hybrid perovskites: effective crystal growth for optoelectronic applications. Adv Energy Mater, 2017, 7: 1602596CrossRefGoogle Scholar
  10. 10.
    Chen B, Zheng X, Bai Y, et al. Progress in tandem solar cells based on hybrid organic-inorganic perovskites. Adv Energy Mater, 2017, 7: 1602400CrossRefGoogle Scholar
  11. 11.
    Lyu M, Yun JH, Chen P, et al. Addressing toxicity of lead: progress and applications of low-toxic metal halide perovskites and their derivatives. Adv Energy Mater, 2017, 7: 1602512CrossRefGoogle Scholar
  12. 12.
    Shi Z, Guo J, Chen Y, et al. Lead-free organic-inorganic hybrid perovskites for photovoltaic applications: recent advances and perspectives. Adv Mater, 2017, 29: 1605005CrossRefGoogle Scholar
  13. 13.
    Krishnamoorthy T, Ding H, Yan C, et al. Lead-free germanium iodide perovskite materials for photovoltaic applications. J Mater Chem A, 2015, 3: 23829–23832CrossRefGoogle Scholar
  14. 14.
    Zhao Z, Gu F, Li Y, et al. Mixed-organic-cation tin iodide for leadfree perovskite solar cells with an efficiency of 8.12%. Adv Sci, 2017, 4: 1700204CrossRefGoogle Scholar
  15. 15.
    Boopathi KM, Karuppuswamy P, Singh A, et al. Solution-processable antimony-based light-absorbing materials beyond lead halide perovskites. J Mater Chem A, 2017, 5: 20843–20850CrossRefGoogle Scholar
  16. 16.
    Jiang F, Yang D, Jiang Y, et al. Chlorine-incorporation-induced formation of the layered phase for antimony-based lead-free perovskite solar cells. J Am Chem Soc, 2018, 140: 1019–1027CrossRefGoogle Scholar
  17. 17.
    Hebig JC, Kühn I, Flohre J, et al. Optoelectronic properties of (CH3NH3)3Sb2I9 thin films for photovoltaic applications. ACS Energy Lett, 2016, 1: 309–314CrossRefGoogle Scholar
  18. 18.
    Saparov B, Hong F, Sun JP, et al. Thin-film preparation and characterization of Cs3Sb2I9: A lead-free layered perovskite semiconductor. Chem Mater, 2015, 27: 5622–5632CrossRefGoogle Scholar
  19. 19.
    Harikesh PC, Mulmudi HK, Ghosh B, et al. Rb as an alternative cation for templating inorganic lead-free perovskites for solution processed photovoltaics. Chem Mater, 2016, 28: 7496–7504CrossRefGoogle Scholar
  20. 20.
    Zuo C, Ding L. Lead-free perovskite materials (NH4)3Sb2IxBr9-x. Angew Chem Int Ed, 2017, 56: 6528–6532CrossRefGoogle Scholar
  21. 21.
    Baranwal AK, Masutani H, Sugita H, et al. Lead-free perovskite solar cells using Sb and Bi-based A3B2X9 and A3BX6 crystals with normal and inverse cell structures. Nano Convergence, 2017, 4: 26CrossRefGoogle Scholar
  22. 22.
    Kim Y, Yang Z, Jain A, et al. Pure cubic-phase hybrid iodobismuthates AgBi2I7 for thin-film photovoltaics. Angew Chem Int Ed, 2016, 55: 9586–9590CrossRefGoogle Scholar
  23. 23.
    Zhu H, Pan M, Johansson MB, et al. High photon-to-current conversion in solar cells based on light-absorbing silver bismuth iodide. ChemSusChem, 2017, 10: 2592–2596CrossRefGoogle Scholar
  24. 24.
    Turkevych I, Kazaoui S, Ito E, et al. Photovoltaic rudorffites: leadfree silver bismuth halides alternative to hybrid lead halide perovskites. ChemSusChem, 2017, 10: 3754–3759CrossRefGoogle Scholar
  25. 25.
    Koster LJA, Mihailetchi VD, Xie H, et al. Origin of the light intensity dependence of the short-circuit current of polymer/fullerene solar cells. Appl Phys Lett, 2005, 87: 203502CrossRefGoogle Scholar
  26. 26.
    Kumar MH, Dharani S, Leong WL, et al. Lead-free halide perovskite solar cells with high photocurrents realized through vacancy modulation. Adv Mater, 2014, 26: 7122–7127CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Center for Excellence in Nanoscience (CAS), Key Laboratory of Nanosystem and Hierarchical Fabrication (CAS)National Center for Nanoscience and TechnologyBeijingChina
  2. 2.University of Chinese Academy of SciencesBeijingChina

Personalised recommendations