Advertisement

Science China Materials

, Volume 62, Issue 2, pp 211–224 | Cite as

Densely quaternized anion exchange membranes synthesized from Ullmann coupling extension of ionic segments for vanadium redox flow batteries

  • Yu Chen (陈煜)
  • Qilang Lin (林起浪)
  • Yuying Zheng (郑玉婴)
  • Yan Yu (于岩)
  • Dongyang Chen (陈栋阳)
Articles
  • 100 Downloads

Abstract

Membranes with high ion conductivity and selectivity are important for vanadium redox flow batteries. Herein, densely quaternized anion exchange membranes based on quaternary ammonium functionalized octa-benzylmethyl-containing poly(fluorenyl ether ketone)s (QA-OMPFEKs) were prepared from the (i) condensation polymerization of a newly developed octa-benzylmethyl-containing bisphenol monomer via Ullmann coupling, (ii) bromination at the benzylmethyl sites using N-bromosuccinimide, and (iii) quaternization of the bromomethyl groups using trimethylamine. The QA-OMPFEK-20 with an ion exchange capacity (IEC) of 1.66 mmol g−1 exhibited a higher SO42− conductivity (9.62 mS cm−1) than that of the QA-TMPFEK-40 (4.82 mS cm−1) at room temperature, which had a slightly higher IEC of 1.73 mmol g−1 but much lower QA density. The enhanced SO42− conductivity of QA-OMPFEK-20 was attributed to the ion-segregated structure arising from the densely anchored QA groups, which was validated by SAXS observation. Furthermore, the QA-OMPFEK-20 showed much lower VO2+ permeability (1.24×10−14 m2 s−1) than QA-TMPFEK-40 (5.40×10−13 m2 s−1) and Nafion N212 (5.36×10−12 m2 s−1), leading to improved Coulombic and energy efficiencies in Vanadium redox flow batteries (VRFBs). Therefore, the Ullmann coupling extension is a valuable approach for the development of high performance anion exchange membranes for VRFBs.

Keywords

anion exchange membranes quaternary ammonium poly(fluorenyl ether ketone)s Ullmann coupling extension phase separation 

基于乌尔曼偶联反应制备的密集季铵化型全钒液流电池阴离子交换膜

摘要

离子传导率和选择性是全钒液流电池隔膜的两项核心性能指标. 本文基于乌尔曼偶联反应设计合成含八苯甲基的双酚单体, 然后依次将其聚合、 溴甲基化、 季铵化制得一系列密集季铵化型阴离子交换膜(QA-OMPFEKs). 产物QA-OMPFEK-20 (离子交换容量IEC=1.66 mmol g−1)的室温SO42−传导率为9.62 mS cm−1, 明显高于参照样品QA-TMPFEK-40 (IEC = 1.73 mmol g−1)的4.82 mS cm−1. 这归因于QA-OMPFEK-20经小角X射线散射所证实的离子聚集型结构. 此外, QA-OMPFEK-20的钒离子渗透率(1.24×10−14 m2 s−1)明显低于QA-TMPFEK-40 (5.40×10−13 m2 s−1)和Nafion N212 (5.36×10−12 m2 s−1), 从而使其全钒液流电池的库伦效率和能量效率最高. 可见, 乌尔曼偶联反应是合成高性能全钒液流电池阴离子交换膜的有效路径.

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (51503038).

Supplementary material

40843_2018_9299_MOESM1_ESM.pdf (672 kb)
Densely quaternized anion exchange membranes synthesized from Ullmann coupling extension of ionic segments for vanadium redox flow batteries

References

  1. 1.
    Choi C, Kim S, Kim R, et al. A review of vanadium electrolytes for vanadium redox flow batteries. Renew Sustain Energy Rev, 2017, 69: 263–274CrossRefGoogle Scholar
  2. 2.
    Schwenzer B, Zhang J, Kim S, et al. Membrane development for vanadium redox flow batteries. ChemSusChem, 2011, 4: 1388–1406CrossRefGoogle Scholar
  3. 3.
    Chen D, Hickner MA, Agar E, et al. Selective anion exchange membranes for high coulombic efficiency vanadium redox flow batteries. Electrochem Commun, 2013, 26: 37–40CrossRefGoogle Scholar
  4. 4.
    Zhang S, Yin C, Xing D, et al. Preparation of chloromethylated/ quaternized poly(phthalazinone ether ketone) anion exchange membrane materials for vanadium redox flow battery applications. J Membrane Sci, 2010, 363: 243–249CrossRefGoogle Scholar
  5. 5.
    Xi J, Jiang B, Yu L, et al. Membrane evaluation for vanadium flow batteries in a temperature range of -20–50°C. J Membrane Sci, 2017, 522: 45–55CrossRefGoogle Scholar
  6. 6.
    Wu C, Lu S, Wang H, et al. A novel polysulfone–polyvinylpyrrolidone membrane with superior proton-to-vanadium ion selectivity for vanadium redox flow batteries. J Mater Chem A, 2016, 4: 1174–1179CrossRefGoogle Scholar
  7. 7.
    Amel A, Smedley SB, Dekel DR, et al. Characterization and chemical stability of anion exchange membranes cross-linked with polar electron-donating linkers. J Electrochem Soc, 2015, 162: F1047–F1055CrossRefGoogle Scholar
  8. 8.
    Teng X, Dai J, Su J, et al. A high performance polytetrafluoroethene/ Nafion composite membrane for vanadium redox flow battery application. J Power Sources, 2013, 240: 131–139CrossRefGoogle Scholar
  9. 9.
    Chen D, Kim S, Li L, et al. Stable fluorinated sulfonated poly (arylene ether) membranes for vanadium redox flow batteries. RSC Adv, 2012, 2: 8087–8094CrossRefGoogle Scholar
  10. 10.
    Zeng L, Zhao TS, Wei L, et al. Highly stable pyridinium-functionalized cross-linked anion exchange membranes for all vanadium redox flow batteries. J Power Sources, 2016, 331: 452–461CrossRefGoogle Scholar
  11. 11.
    Sata T. Studies on anion exchange membranes having permselectivity for specific anions in electrodialysis—effect of hydrophilicity of anion exchange membranes on permselectivity of anions. J Membrane Sci, 2000, 167: 1–31CrossRefGoogle Scholar
  12. 12.
    Hickner MA, Herring AM, Coughlin EB. Anion exchange membranes: Current status and moving forward. J Polym Sci Part BPolym Phys, 2013, 51: 1727–1735CrossRefGoogle Scholar
  13. 13.
    Ran J, Wu L, Ru Y, et al. Anion exchange membranes (AEMs) based on poly(2,6-dimethyl-1,4-phenylene oxide) (PPO) and its derivatives. Polym Chem, 2015, 6: 5809–5826CrossRefGoogle Scholar
  14. 14.
    Kumar M, Tripathi BP, Saxena A, et al. Electrochemical membrane reactor: Synthesis of quaternary ammonium hydroxide from its halide by in situ ion substitution. Electrochim Acta, 2009, 54: 1630–1637CrossRefGoogle Scholar
  15. 15.
    Cheng J, He G, Zhang F. A mini-review on anion exchange membranes for fuel cell applications: Stability issue and addressing strategies. Int J Hydrogen Energy, 2015, 40: 7348–7360CrossRefGoogle Scholar
  16. 16.
    Li N, Zhang Q, Wang C, et al. Phenyltrimethylammonium functionalized polysulfone anion exchange membranes. Macromolecules, 2012, 45: 2411–2419CrossRefGoogle Scholar
  17. 17.
    Yang Y, Knauss DM. Poly(2,6-dimethyl-1,4-phenylene oxide)-bpoly( vinylbenzyltrimethylammonium) diblock copolymers for highly conductive anion exchange membranes. Macromolecules, 2015, 48: 4471–4480CrossRefGoogle Scholar
  18. 18.
    Zhu L, Pan J, Christensen CM, et al. Functionalization of poly(2,6-dimethyl-1,4-phenylene oxide)s with hindered fluorene side chains for anion exchange membranes. Macromolecules, 2016, 49: 3300–3309CrossRefGoogle Scholar
  19. 19.
    He Y, Pan J, Wu L, et al. A novel methodology to synthesize highly conductive anion exchange membranes. Sci Rep, 2015, 5: 13417CrossRefGoogle Scholar
  20. 20.
    He S, Liu L, Wang X, et al. Azide-assisted self-crosslinking of highly ion conductive anion exchange membranes. J Membrane Sci, 2016, 509: 48–56CrossRefGoogle Scholar
  21. 21.
    Chen D, Hickner MA. Degradation of imidazolium- and quaternary ammonium-functionalized poly(fluorenyl ether ketone sulfone) anion exchange membranes. ACS Appl Mater Interfaces, 2012, 4: 5775–5781CrossRefGoogle Scholar
  22. 22.
    Tanaka M, Fukasawa K, Nishino E, et al. Anion conductive block poly(arylene ether)s: synthesis, properties, and application in alkaline fuel cells. J Am Chem Soc, 2011, 133: 10646–10654CrossRefGoogle Scholar
  23. 23.
    Shimada M, Shimada S, Miyake J, et al. Anion conductive aromatic polymers containing fluorenyl groups: Effect of the position and number of ammonium groups. J Polym Sci Part A-Polym Chem, 2016, 54: 935–944CrossRefGoogle Scholar
  24. 24.
    Lai AN, Wang LS, Lin CX, et al. Phenolphthalein-based poly(arylene ether sulfone nitrile)s multiblock copolymers as anion exchange membranes for alkaline fuel cells. ACS Appl Mater Interfaces, 2015, 7: 8284–8292CrossRefGoogle Scholar
  25. 25.
    Li X, Nie G, Tao J, et al. Assessing the influence of side-chain and main-chain aromatic benzyltrimethyl ammonium on anion exchange membranes. ACS Appl Mater Interfaces, 2014, 6: 7585–7595CrossRefGoogle Scholar
  26. 26.
    Zhang Z, Shen K, Lin L, et al. Anion exchange membranes based on tetra-quaternized poly(arylene ether ketone). J Membrane Sci, 2016, 497: 318–327CrossRefGoogle Scholar
  27. 27.
    Tanaka M, Koike M, Miyatake K, et al. Synthesis and properties of anion conductive ionomers containing fluorenyl groups for alkaline fuel cell applications. Polym Chem, 2011, 2: 99–106CrossRefGoogle Scholar
  28. 28.
    Hibbs MR. Alkaline stability of poly(phenylene)-based anion exchange membranes with various cations. J Polym Sci Part B-Polym Phys, 2013, 51: 1736–1742CrossRefGoogle Scholar
  29. 29.
    Wang C, Shen B, Xu C, et al. Side-chain-type poly(arylene ether sulfone)s containing multiple quaternary ammonium groups as anion exchange membranes. J Membrane Sci, 2015, 492: 281–288CrossRefGoogle Scholar
  30. 30.
    Varcoe JR, Atanassov P, Dekel DR, et al. Anion-exchange membranes in electrochemical energy systems. Energy Environ Sci, 2014, 7: 3135–3191CrossRefGoogle Scholar
  31. 31.
    Weiber EA, Jannasch P. Ion distribution in quaternary-ammonium-functionalized aromatic polymers: effects on the ionic clustering and conductivity of anion-exchange membranes. ChemSusChem, 2014, 7: 2621–2630CrossRefGoogle Scholar
  32. 32.
    Chen D, Hickner MA. Ion clustering in quaternary ammonium functionalized benzylmethyl containing poly(arylene ether ketone)s. Macromolecules, 2013, 46: 9270–9278CrossRefGoogle Scholar
  33. 33.
    Chen D, Wang S, Xiao M, et al. Synthesis and properties of novel sulfonated poly(arylene ether sulfone) ionomers for vanadium redox flow battery. Energy Convers Manage, 2010, 51: 2816–2824CrossRefGoogle Scholar
  34. 34.
    Fujimoto CH, Hickner MA, Cornelius CJ, et al. Ionomeric poly (phenylene) prepared by Diels-Alder polymerization: synthesis and physical properties of a novel polyelectrolyte. Macromolecules, 2005, 38: 5010–5016CrossRefGoogle Scholar
  35. 35.
    Largier TD, Cornelius CJ. Random quaternary ammonium Diels-Alder poly(phenylene) copolymers for improved vanadium redox flow batteries. J Power Sources, 2017, 352: 149–155CrossRefGoogle Scholar
  36. 36.
    Wiedemann E, Heintz A, Lichtenthaler RN. Transport properties of vanadium ions in cation exchange membranes: Determination of diffusion coefficients using a dialysis cell. J Membrane Sci, 1998, 141: 215–221CrossRefGoogle Scholar
  37. 37.
    Kim S, Tighe TB, Schwenzer B, et al. Chemical and mechanical degradation of sulfonated poly(sulfone) membranes in vanadium redox flow batteries. J Appl Electrochem, 2011, 41: 1201–1213CrossRefGoogle Scholar
  38. 38.
    Xing D, Zhang S, Yin C, et al. Effect of amination agent on the properties of quaternized poly(phthalazinone ether sulfone) anion exchange membrane for vanadium redox flow battery application. J Membrane Sci, 2010, 354: 68–73CrossRefGoogle Scholar
  39. 39.
    Cheng S, Beyer FL, Mather BD, et al. Phosphonium-containing ABA triblock copolymers: controlled free radical polymerization of phosphonium ionic liquids. Macromolecules, 2011, 44: 6509–6517CrossRefGoogle Scholar
  40. 40.
    Yan J, Hickner MA. Anion exchange membranes by bromination of benzylmethyl-containing poly(sulfone)s. Macromolecules, 2010, 43: 2349–2356CrossRefGoogle Scholar
  41. 41.
    Lin X, Varcoe JR, Poynton SD, et al. Alkaline polymer electrolytes containing pendant dimethylimidazolium groups for alkaline membrane fuel cells. J Mater Chem A, 2013, 1: 7262–7269CrossRefGoogle Scholar
  42. 42.
    Weiber EA, Jannasch P. Polysulfones with highly localized imidazolium groups for anion exchange membranes. J Membrane Sci, 2015, 481: 164–171CrossRefGoogle Scholar
  43. 43.
    Yun S, Parrondo J, Ramani V. Derivatized cardo-polyetherketone anion exchange membranes for all-vanadium redox flow batteries. J Mater Chem A, 2014, 2: 6605–6615CrossRefGoogle Scholar
  44. 44.
    Kornyshev AA, Kuznetsov AM, Spohr E, et al. Kinetics of proton transport in water. J Phys Chem B, 2003, 107: 3351–3366CrossRefGoogle Scholar
  45. 45.
    Matsumoto K, Higashihara T, Ueda M. Locally and densely sulfonated poly(ether sulfone)s as proton exchange membrane. Macromolecules, 2009, 42: 1161–1166CrossRefGoogle Scholar
  46. 46.
    Li X, Liu Q, Yu Y, et al. Quaternized poly(arylene ether) ionomers containing triphenyl methane groups for alkaline anion exchange membranes. J Mater Chem A, 2013, 1: 4324–4335CrossRefGoogle Scholar
  47. 47.
    Ono H, Miyake J, Shimada S, et al. Anion exchange membranes composed of perfluoroalkylene chains and ammonium-functionalized oligophenylenes. J Mater Chem A, 2015, 3: 21779–21788CrossRefGoogle Scholar
  48. 48.
    Zhang S, Zhang B, Xing D, et al. Poly(phthalazinone ether ketone ketone) anion exchange membranes with pyridinium as ion exchange groups for vanadium redox flow battery applications. J Mater Chem A, 2013, 1: 12246–12254CrossRefGoogle Scholar
  49. 49.
    Jiang B, Wu L, Yu L, et al. A comparative study of Nafion series membranes for vanadium redox flow batteries. J Membrane Sci, 2016, 510: 18–26CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Yu Chen (陈煜)
    • 1
  • Qilang Lin (林起浪)
    • 1
  • Yuying Zheng (郑玉婴)
    • 1
  • Yan Yu (于岩)
    • 1
    • 2
  • Dongyang Chen (陈栋阳)
    • 1
    • 2
  1. 1.College of Materials Science and EngineeringFuzhou UniversityFuzhouChina
  2. 2.Key Laboratory of Eco-materials Advanced Technology (Fuzhou University)FuzhouChina

Personalised recommendations