Advertisement

Science China Materials

, Volume 61, Issue 9, pp 1137–1142 | Cite as

A significant enhancement of catalytic performance by adjusting catalyst wettability

  • Liang Wang (王亮)
  • Feng-Shou Xiao (肖丰收)
Perspective
  • 199 Downloads

通过调控催化材料的浸润性提高其催化性能

摘要

固相材料的浸润性(包括亲水性、 疏水性、 亲油性和疏油性)已经成为设计与合成多相催化材料中必须要考虑的因素. 总结近年来的实验结果发现, 催化材料的浸润性对分子的扩散有显著影响, 适宜的浸润性与活性中心的协同是增强催化性能的关键, 这可以通过(i)有效富集反应物、 (ii)快速扩散产物、 (iii)促进形成反应中间体、 (iv)避免副反应和(v)提高催化材料结构等因素来提升多相催化材料的活性、 选择性和反应寿命, 这为设计与制备高效多相催化材料提供了新机遇.

Notes

Acknowledgements

This work was supported by the National Key Research and Development Program of China (2017YFC0211101), the National Natural Science Foundation of China (21720102001, 91645105 and 91634201), and the Natural Science Foundation of Zhejiang Province (LR18B030002).

References

  1. 1.
    Zhang X, Wilson K, Lee AF. Heterogeneously catalyzed hydrothermal processing of C5–C6 sugars. Chem Rev, 2016, 116: 12328–12368CrossRefGoogle Scholar
  2. 2.
    Dusselier M, Van Wouwe P, Dewaele A, et al. Shape-selective zeolite catalysis for bioplastics production. Science, 2015, 349: 78–80CrossRefGoogle Scholar
  3. 3.
    Mika LT, Cséfalvay E, Németh Á. Catalytic conversion of carbohydrates to initial platform chemicals: chemistry and sustainability. Chem Rev, 2018, 118: 505–613CrossRefGoogle Scholar
  4. 4.
    Zhang R, Liu N, Lei Z, et al. Selective transformation of various nitrogen-containing exhaust gases toward N2 over zeolite catalysts. Chem Rev, 2016, 116: 3658–3721CrossRefGoogle Scholar
  5. 5.
    Zhang C, Liu F, Zhai Y, et al. Alkali-metal-promoted Pt/TiO2 opens a more efficient pathway to formaldehyde oxidation at ambient temperatures. Angew Chem Int Ed, 2012, 51: 9628–9632CrossRefGoogle Scholar
  6. 6.
    Fan X, Zhang L, Li M, et al. α-Ferrous oxalate dihydrate: a simple coordination polymer featuring photocatalytic and photo-initiated Fenton oxidations. Sci China Mater, 2016, 59: 574–580CrossRefGoogle Scholar
  7. 7.
    Wu F, Wang L, Chen J, et al. Direct synthesis of polysubstituted aldehydes via visible-light catalysis. Angew Chem, 2018, 130: 2196–2200CrossRefGoogle Scholar
  8. 8.
    Zhang B, Wang S, Fan W, et al. Photoassisted oxygen reduction reaction in H2-O2 fuel cells. Angew Chem Int Ed, 2016, 55: 14748–14751CrossRefGoogle Scholar
  9. 9.
    Zhang G, Li G, Lan ZA, et al. Optimizing optical absorption, exciton dissociation, and charge transfer of a polymeric carbon nitride with ultrahigh solar hydrogen production activity. Angew Chem Int Ed, 2017, 56: 13445–13449CrossRefGoogle Scholar
  10. 10.
    Jagadeesh RV, Murugesan K, Alshammari AS, et al. MOF-derived cobalt nanoparticles catalyze a general synthesis of amines. Science, 2017, 358: 326–332CrossRefGoogle Scholar
  11. 11.
    Jagadeesh RV, Surkus AE, Junge H, et al. Nanoscale Fe2O3-based catalysts for selective hydrogenation of nitroarenes to anilines. Science, 2013, 342: 1073–1076CrossRefGoogle Scholar
  12. 12.
    Wang L, Meng X, Wang B, et al. Pyrrolidone-modified SBA-15 supported Au nanoparticles with superior catalytic properties in aerobic oxidation of alcohols. Chem Commun, 2010, 46: 5003–5005CrossRefGoogle Scholar
  13. 13.
    Li B, Bai S, Wang X, et al. Hydration of epoxides on [CoIII (salen)] encapsulated in silica-based nanoreactors. Angew Chem Int Ed, 2012, 51: 11517–11521CrossRefGoogle Scholar
  14. 14.
    Yang H, Zhang L, Zhong L, et al. Enhanced cooperative activation effect in the hydrolytic kinetic resolution of epoxides on [Co (salen)] catalysts confined in nanocages. Angew Chem Int Ed, 2007, 46: 6861–6865CrossRefGoogle Scholar
  15. 15.
    Chen Z, Guan Z, Li M, et al. Enhancement of the performance of a platinum nanocatalyst confined within carbon nanotubes for asymmetric hydrogenation. Angew Chem Int Ed, 2011, 50: 4913–4917CrossRefGoogle Scholar
  16. 16.
    Wang L, Xiao FS. The importance of catalyst wettability. Chem-CatChem, 2014, 6: 3048–3052Google Scholar
  17. 17.
    Blasco T, Camblor MA, Corma A, et al. Direct synthesis and characterization of hydrophobic aluminum-free Ti−beta zeolite. J Phys Chem B, 1998, 102: 75–88CrossRefGoogle Scholar
  18. 18.
    Bhaumik A, Kumar R. Titanium silicate molecular sieve (TS-1)/H2O2 induced triphase catalysis in the oxidation of hydrophobic organic compounds with significant enhancement of activity and Para-selectivity. J Chem Soc Chem Commun, 1995, 3: 349–350CrossRefGoogle Scholar
  19. 19.
    Serrano DP, Calleja G, Botas JA, et al. Characterization of adsorptive and hydrophobic properties of silicalite-1, ZSM-5, TS-1 and Beta zeolites by TPD techniques. Sep Purif Technol, 2007, 54: 1–9CrossRefGoogle Scholar
  20. 20.
    Sonoda J, Kamegawa T, Kuwahara Y, et al. Hydrophobic modification of Ti-containing zeolite (TS-1) and their applications in liquid-phase selective catalytic reactions. B Chem Soc Jpn, 2010, 83: 592–594CrossRefGoogle Scholar
  21. 21.
    Wang L, Sun J, Meng X, et al. A significant enhancement of catalytic activities in oxidation with H2O2 over the TS-1 zeolite by adjusting the catalyst wettability. Chem Commun, 2014, 50: 2012–2014CrossRefGoogle Scholar
  22. 22.
    Zhang Y, Wei S, Liu F, et al. Superhydrophobic nanoporous polymers as efficient adsorbents for organic compounds. Nano Today, 2009, 4: 135–142CrossRefGoogle Scholar
  23. 23.
    Sun Q, Dai Z, Meng X, et al. Homochiral porous framework as a platform for durability enhancement of molecular catalysts. Chem Mater, 2017, 29: 5720–5726CrossRefGoogle Scholar
  24. 24.
    Sun Q, Aguila B, Verma G, et al. Superhydrophobicity: constructing homogeneous catalysts into superhydrophobic porous frameworks to protect them from hydrolytic degradation. Chem, 2016, 1: 628–639CrossRefGoogle Scholar
  25. 25.
    Sun Q, Dai Z, Liu X, et al. Highly efficient heterogeneous hydroformylation over Rh-metalated porous organic polymers: synergistic effect of high ligand concentration and flexible framework. J Am Chem Soc, 2015, 137: 5204–5209CrossRefGoogle Scholar
  26. 26.
    Sun Q, Dai Z, Meng X, et al. Porous polymer catalysts with hierarchical structures. Chem Soc Rev, 2015, 44: 6018–6034CrossRefGoogle Scholar
  27. 27.
    Liu F, Wang L, Sun Q, et al. Transesterification catalyzed by ionic liquids on superhydrophobic mesoporous polymers: heterogeneous catalysts that are faster than homogeneous catalysts. J Am Chem Soc, 2012, 134: 16948–16950CrossRefGoogle Scholar
  28. 28.
    Lin JD, Bi QY, Tao L, et al. Wettability-driven palladium catalysis for enhanced dehydrogenative coupling of organosilanes. ACS Catal, 2017, 7: 1720–1727CrossRefGoogle Scholar
  29. 29.
    Huang G, Yang Q, Xu Q, et al. Polydimethylsiloxane coating for a palladium/MOF composite: highly improved catalytic performance by surface hydrophobization. Angew Chem Int Ed, 2016, 55: 7379–7383CrossRefGoogle Scholar
  30. 30.
    Chen X, Qian P, Zhang T, et al. Catalyst surfaces with tunable hydrophilicity and hydrophobicity: metal–organic frameworks toward controllable catalytic selectivity. Chem Commun, 2018, 54: 3936–3939CrossRefGoogle Scholar
  31. 31.
    Sun Q, Chen M, Aguila B, et al. Enhancing the biofuel upgrade performance for Pd nanoparticles via increasing the support hydrophilicity of metal–organic frameworks. Faraday Discuss, 2017, 201: 317–326CrossRefGoogle Scholar
  32. 32.
    Wang C, Wang L, Zhang J, et al. Product selectivity controlled by zeolite crystals in biomass hydrogenation over a palladium catalyst. J Am Chem Soc, 2016, 138: 7880–7883CrossRefGoogle Scholar
  33. 33.
    Wang C, Liu Z, Wang L, et al. Importance of zeolite wettability for selective hydrogenation of furfural over Pd@zeolite catalysts. ACS Catal, 2018, 8: 474–481CrossRefGoogle Scholar
  34. 34.
    Peng Y, Wang L, Luo Q, et al. Molecular-level insight into how hydroxyl groups boost catalytic activity in CO2 hydrogenation into methanol. Chem, 2018, 4: 613–625CrossRefGoogle Scholar
  35. 35.
    Wang L, Wang H, Liu F, et al. Selective catalytic production of 5-hydroxymethylfurfural from glucose by adjusting catalyst wettability. ChemSusChem, 2014, 7: 402–406CrossRefGoogle Scholar
  36. 36.
    Wang L, Wang G, Zhang J, et al. Controllable cyanation of carbonhydrogen bonds by zeolite crystals over manganese oxide catalyst. Nat Commun, 2017, 8: 15240CrossRefGoogle Scholar
  37. 37.
    Zapata PA, Faria J, Ruiz MP, et al. Hydrophobic zeolites for biofuel upgrading reactions at the liquid–liquid interface in water/oil emulsions. J Am Chem Soc, 2012, 134: 8570–8578CrossRefGoogle Scholar
  38. 38.
    Sun Q, He H, Gao WY, et al. Imparting amphiphobicity on singlecrystalline porous materials. Nat Commun, 2016, 7: 13300CrossRefGoogle Scholar
  39. 39.
    Lin W, Cheng H, Ming J, et al. Deactivation of Ni/TiO2 catalyst in the hydrogenation of nitrobenzene in water and improvement in its stability by coating a layer of hydrophobic carbon. J Catal, 2012, 291: 149–154CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Liang Wang (王亮)
    • 1
  • Feng-Shou Xiao (肖丰收)
    • 1
  1. 1.Key Lab of Applied Chemistry of Zhejiang Province, Department of ChemistryZhejiang UniversityHangzhouChina

Personalised recommendations