Science China Materials

, Volume 62, Issue 2, pp 256–272 | Cite as

In vitro and in vivo investigation on biodegradable Mg-Li-Ca alloys for bone implant application

  • Dandan Xia (夏丹丹)
  • Yang Liu (刘洋)
  • Siyi Wang (王思仪)
  • Rong-Chang Zeng (曾荣昌)
  • Yunsong Liu (刘云松)Email author
  • Yufeng Zheng (郑玉峰)Email author
  • Yongsheng Zhou (周永胜)


Magnesium alloys show promise for application in orthopedic implants, owing to their biodegradability and biocompatibility. In the present study, ternary Mg-(3.5, 6.5 wt%) Li-(0.2, 0.5, 1.0 wt%) Ca alloys were developed. Their mechanical strength, corrosion behavior and cytocompatibility were studied. These alloys showed improved mechanical strength than pure Mg and exhibited suitable corrosion resistance. Furthermore, Mg-3.5Li-0.5Ca alloys with the best in vitro performance were implanted intramedullary into the femurs of mice for 2 and 8 weeks. In vivo results revealed a significant increase in cortical bone thickness around the Mg-3.5Li-0.5Ca alloy rods, without causing any adverse effects. Western blotting and immunofluorescence staining of β-catenin illustrated that Mg-3.5Li-0.5Ca alloy extracts induced osteogenic differentiation of human bone marrow-derived mesenchymal stem cells (hBMMSCs) through the canonical Wnt/β-catenin pathway. Our studies demonstrate that Mg-3.5Li-0.5Ca alloys hold much promise as candidates for the facilitation of bone implant application.


Mg-Li-Ca alloy cytocompatibility biocompatibility human bone marrow-derived mesenchymal stem cells osteogenic differentiation 



本文制备了三元Mg-(3.5, 6.5 wt.%)Li-(0.2, 0.5, 1.0 wt.%)Ca合金, 并研究了其力学性能、 腐蚀性能与生物相容性. 此合金的力学性能较纯镁显著提高, 并具有良好的耐腐蚀性. 然后, 将体外性能最佳的Mg-3.5Li-0.5Ca合金植入小鼠股骨骨髓腔, 体内实验结果显示, Mg-3.5Li-0.5Ca合金周围的骨厚度增加, 未见不良反应. Western blot和免疫荧光染色结果显示, Mg-3.5Li-0.5Ca合金通过经典的Wnt/β-catenin信号通路促进了人骨髓间充质干细胞的成骨向分化. 研究结果表明, Mg-3.5Li-0.5Ca合金具有作为骨植入材料的巨大潜力.



This work was supported by the National Key Research and Development Program of China (2016YFC1102900 and 2016YFC1102402), the National Natural Science Foundation of China (81771039, 81470769 and 51431002), the Project for Culturing Leading Talents in Scientific and Technological Innovation of Beijing, China (Z171100001117169), the NSFC-RFBR Cooperation Project (51611130054), and the NSFC/RGC Joint Research Scheme (51361165101 and 5161101031).

Supplementary material

40843_2018_9293_MOESM1_ESM.pdf (966 kb)
In vitro and in vivo investigation on biodegradable Mg-Li-Ca alloys for bone implant application


  1. 1.
    Witte F, Kaese V, Haferkamp H, et al. In vivo corrosion of four magnesium alloys and the associated bone response. Biomaterials, 2005, 26: 3557–3563CrossRefGoogle Scholar
  2. 2.
    Witte F, Fischer J, Nellesen J, et al. In vitro and in vivo corrosion measurements of magnesium alloys. Biomaterials, 2006, 27: 1013–1018CrossRefGoogle Scholar
  3. 3.
    Cheng P, Han P, Zhao C, et al. High-purity magnesium interference screws promote fibrocartilaginous entheses regeneration in the anterior cruciate ligament reconstruction rabbit model via accumulation of BMP-2 and VEGF. Biomaterials, 2016, 81: 14–26CrossRefGoogle Scholar
  4. 4.
    Zhao D, Huang S, Lu F, et al. Vascularized bone grafting fixed by biodegradable magnesium screw for treating osteonecrosis of the femoral head. Biomaterials, 2016, 81: 84–92CrossRefGoogle Scholar
  5. 5.
    Staiger MP, Pietak AM, Huadmai J, et al. Magnesium and its alloys as orthopedic biomaterials: A review. Biomaterials, 2006, 27: 1728–1734CrossRefGoogle Scholar
  6. 6.
    Witte F. The history of biodegradable magnesium implants: A review. Acta Biomater, 2010, 6: 1680–1692CrossRefGoogle Scholar
  7. 7.
    Rössig C, Angrisani N, Helmecke P, et al. In vivo evaluation of a magnesium-based degradable intramedullary nailing system in a sheep model. Acta Biomater, 2015, 25: 369–383CrossRefGoogle Scholar
  8. 8.
    Witte F, Hort N, Vogt C, et al. Degradable biomaterials based on magnesium corrosion. Curr Opin Solid State Mater Sci, 2008, 12: 63–72CrossRefGoogle Scholar
  9. 9.
    Xu W, Birbilis N, Sha G, et al. A high-specific-strength and corrosion-resistant magnesium alloy. Nat Mater, 2015, 14: 1229–1235CrossRefGoogle Scholar
  10. 10.
    Geddes JR, Burgess S, Hawton K, et al. Long-term lithium therapy for bipolar disorder: systematic review and meta-analysis of randomized controlled trials. Am J Psych, 2004, 161: 217–222CrossRefGoogle Scholar
  11. 11.
    Baastrup PC, Poulsen JC, Schou M, et al. Prophylactic lithium: double blind discontinuation in manic-depressive and recurrentdepressive disorders. Lancet, 1970, 296: 326–330CrossRefGoogle Scholar
  12. 12.
    Clément-Lacroix P, Ai M, Morvan F, et al. Lrp5-independent activation of Wnt signaling by lithium chloride increases bone formation and bone mass in mice. Proc Natl Acad Sci USA, 2005, 102: 17406–17411CrossRefGoogle Scholar
  13. 13.
    Day TF, Guo X, Garrett-Beal L, et al. Wnt/ß-catenin signaling in mesenchymal progenitors controls osteoblast and chondrocyte differentiation during vertebrate skeletogenesis. Dev Cell, 2005, 8: 739–750CrossRefGoogle Scholar
  14. 14.
    Zamani A, Omrani GR, Nasab MM. Lithium’s effect on bone mineral density. Bone, 2009, 44: 331–334CrossRefGoogle Scholar
  15. 15.
    Hirai K, Somekawa H, Takigawa Y, et al. Effects of Ca and Sr addition on mechanical properties of a cast AZ91 magnesium alloy at room and elevated temperature. Mater Sci Eng-A, 2005, 403: 276–280CrossRefGoogle Scholar
  16. 16.
    Erdmann N, Angrisani N, Reifenrath J, et al. Biomechanical testing and degradation analysis of MgCa0.8 alloy screws: A comparative in vivo study in rabbits. Acta Biomater, 2011, 7: 1421–1428CrossRefGoogle Scholar
  17. 17.
    Haferkamp H, Niemeyer M, Boehm R, et al. Development, processing and applications range of magnesium lithium alloys. Magnesium alloys, 2000, 350–351: 31–41Google Scholar
  18. 18.
    Haferkamp H, Boehm R, Holzkamp U, et al. Alloy development, processing and applications in magnesium lithium alloys. Mater Trans, 2001, 42: 1160–1166CrossRefGoogle Scholar
  19. 19.
    Johnston Jr. CC, Miller JZ, Slemenda CW, et al. Calcium supplementation and increases in bone mineral density in children. N Engl J Med, 1992, 327: 82–87CrossRefGoogle Scholar
  20. 20.
    Tang BM, Eslick GD, Nowson C, et al. Use of calcium or calcium in combination with vitamin D supplementation to prevent fractures and bone loss in people aged 50 years and older: a metaanalysis. Lancet, 2007, 370: 657–666CrossRefGoogle Scholar
  21. 21.
    Zeng R, Sun X, Song Y, et al. Influence of solution temperature on corrosion resistance of Zn-Ca phosphate conversion coating on biomedical Mg-Li-Ca alloys. Trans Nonferrous Met Soc China, 2013, 23: 3293–3299CrossRefGoogle Scholar
  22. 22.
    Zeng RC, Sun L, Zheng YF, et al. Corrosion and characterisation of dual phase Mg–Li–Ca alloy in Hank’s solution: The influence of microstructural features. Corrosion Sci, 2014, 79: 69–82CrossRefGoogle Scholar
  23. 23.
    ASTM E8/E8M-16a. Standard Test Methods for Tension Testing of Metallic Materials, Annual Book of ASTM standards. 2004Google Scholar
  24. 24.
    Liu Y, Wu Y, Bian D, et al. Study on the Mg-Li-Zn ternary alloy system with improved mechanical properties, good degradation performance and different responses to cells. Acta Biomater, 2017, 62: 418–433CrossRefGoogle Scholar
  25. 25.
    Kirkland NT, Birbilis N, Staiger MP. Assessing the corrosion of biodegradable magnesium implants: A critical review of current methodologies and their limitations. Acta Biomater, 2012, 8: 925–936CrossRefGoogle Scholar
  26. 26.
    ASTM G31-72. Standard Practice for Laboratory Immersion Corrosion Testing of Metals. 1990Google Scholar
  27. 27.
    Zeng RC, Cui L, Jiang K, et al. In vitro corrosion and cytocompatibility of a microarc oxidation coating and poly(l-lactic acid) composite coating on Mg–1Li–1Ca alloy for orthopedic implants. ACS Appl Mater Interfaces, 2016, 8: 10014–10028CrossRefGoogle Scholar
  28. 28.
    ISO 10993–5. Biological evaluation of medical devices—Part 5: Tests for in vitro cytotoxicity. International Organization for Standardisation, 2009Google Scholar
  29. 29.
    Liu Y, Zhang X, Liu Y, et al. Bi-functionalization of a calcium phosphate-coated titanium surface with slow-release simvastatin and metronidazole to provide antibacterial activities and proosteodifferentiation capabilities. PLoS ONE, 2014, 9: e97741CrossRefGoogle Scholar
  30. 30.
    Ge W, Shi L, Zhou Y, et al. Inhibition of osteogenic differentiation of human adipose-derived stromal cells by retinoblastoma binding protein 2 repression of RUNX2-activated transcription. Stem Cells, 2011, 29: 1112–1125CrossRefGoogle Scholar
  31. 31.
    Wang Y, Wei M, Gao J, et al. Corrosion process of pure magnesium in simulated body fluid. Mater Lett, 2008, 62: 2181–2184CrossRefGoogle Scholar
  32. 32.
    Zhang M, Elkin FM. Mg-Li Ultra-light Alloy. Beijing: Science Press, 2010Google Scholar
  33. 33.
    Cipriano AF, Sallee A, Guan RG, et al. Investigation of magnesium–zinc–calcium alloys and bone marrow derived mesenchymal stem cell response in direct culture. Acta Biomater, 2015, 12: 298–321CrossRefGoogle Scholar
  34. 34.
    Yang C, Yuan G, Zhang J, et al. Effects of magnesium alloys extracts on adult human bone marrow-derived stromal cell viability and osteogenic differentiation. Biomed Mater, 2010, 5: 045005CrossRefGoogle Scholar
  35. 35.
    Wu Y, Zhu S, Wu C, et al. A bi-lineage conducive scaffold for osteochondral defect regeneration. Adv Funct Mater, 2014, 24: 4473–4483CrossRefGoogle Scholar
  36. 36.
    Poitevin AA, Viezzer C, Machado DC, et al. Effect of standard and neutral-pH peritoneal dialysis solutions upon fibroblasts pro-liferation. J Bras Nefrol, 2014, 36: 150–154CrossRefGoogle Scholar
  37. 37.
    Nguyen TY, Liew CG, Liu H. An in vitro mechanism study on the proliferation and pluripotency of human embryonic stems cells in response to magnesium degradation. PLoS ONE, 2013, 8: e76547CrossRefGoogle Scholar
  38. 38.
    Wang J, Witte F, Xi T, et al. Recommendation for modifying current cytotoxicity testing standards for biodegradable magnesium-based materials. Acta Biomater, 2015, 21: 237–249CrossRefGoogle Scholar
  39. 39.
    Li Z, Gu X, Lou S, et al. The development of binary Mg–Ca alloys for use as biodegradable materials within bone. Biomaterials, 2008, 29: 1329–1344CrossRefGoogle Scholar
  40. 40.
    Zhang Y, Xu J, Ruan YC, et al. Implant-derived magnesium induces local neuronal production of CGRP to improve bone-fracture healing in rats. Nat Med, 2016, 22: 1160–1169CrossRefGoogle Scholar
  41. 41.
    Han P, Wu C, Chang J, et al. The cementogenic differentiation of periodontal ligament cells via the activation of Wnt/ß-catenin signalling pathway by Li+ ions released from bioactive scaffolds. Biomaterials, 2012, 33: 6370–6379CrossRefGoogle Scholar
  42. 42.
    Tang L, Chen Y, Pei F, et al. Lithium chloride modulates adipogenesis and osteogenesis of human bone marrow-derived mesenchymal stem cells. Cell Physiol Biochem, 2015, 37: 143–152CrossRefGoogle Scholar
  43. 43.
    Rude RK, Gruber HE. Magnesium deficiency and osteoporosis: animal and human observations. J Nutritional Biochem, 2004, 15: 710–716CrossRefGoogle Scholar
  44. 44.
    Yoshizawa S, Brown A, Barchowsky A, et al. Magnesium ion stimulation of bone marrow stromal cells enhances osteogenic activity, simulating the effect of magnesium alloy degradation. Acta Biomater, 2014, 10: 2834–2842CrossRefGoogle Scholar
  45. 45.
    Liu Z, Yao X, Yan G, et al. Mediator MED23 cooperates with RUNX2 to drive osteoblast differentiation and bone development. Nat Commun, 2016, 7: 11149CrossRefGoogle Scholar
  46. 46.
    Komori T. Regulation of osteoblast differentiation by Runx2. Adv Exp Med Biol, 2010, 658: 43–49CrossRefGoogle Scholar
  47. 47.
    Neve A, Corrado A, Cantatore FP. Osteocalcin: Skeletal and extraskeletal effects. J Cell Physiol, 2013, 228: 1149–1153CrossRefGoogle Scholar
  48. 48.
    Nakashima K, Zhou X, Kunkel G, et al. The novel zinc fingercontaining transcription factor osterix is required for osteoblast differentiation and bone formation. Cell, 2002, 108: 17–29CrossRefGoogle Scholar
  49. 49.
    Liu F, Kohlmeier S, Wang CY. Wnt signaling and skeletal development. Cellular Signalling, 2008, 20: 999–1009CrossRefGoogle Scholar
  50. 50.
    Logan CY, Nusse R. The Wnt signaling pathway in development and disease. Annu Rev Cell Dev Biol, 2004, 20: 781–810CrossRefGoogle Scholar
  51. 51.
    Sheng H. Nuclear translocation of beta-catenin in hereditary and carcinogen-induced intestinal adenomas. Carcinogenesis, 1998, 19: 543–549CrossRefGoogle Scholar
  52. 52.
    Zhou WR, Zheng YF, Leeflang MA, et al. Mechanical property, biocorrosion and in vitro biocompatibility evaluations of Mg–Li–(Al)–(RE) alloys for future cardiovascular stent application. Acta Biomater, 2013, 9: 8488–8498CrossRefGoogle Scholar
  53. 53.
    Cui L, Sun L, Zeng R, et al. In vitro degradation and biocompatibility of Mg-Li-Ca alloys—the influence of Li content. Sci China Mater, 2018, 61: 607–618CrossRefGoogle Scholar
  54. 54.
    Díaz-Tocados JM, Herencia C, Martínez-Moreno JM, et al. Magnesium chloride promotes osteogenesis through notch signaling activation and expansion of mesenchymal stem cells. Sci Rep, 2017, 7: 7839CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Dandan Xia (夏丹丹)
    • 1
  • Yang Liu (刘洋)
    • 2
  • Siyi Wang (王思仪)
    • 1
  • Rong-Chang Zeng (曾荣昌)
    • 3
  • Yunsong Liu (刘云松)
    • 1
    • 4
    Email author
  • Yufeng Zheng (郑玉峰)
    • 2
    Email author
  • Yongsheng Zhou (周永胜)
    • 1
    • 4
  1. 1.Department of ProsthodonticsPeking University School and Hospital of StomatologyBeijingChina
  2. 2.Department of Materials Science and Engineering, College of EngineeringPeking UniversityBeijingChina
  3. 3.College of Materials Science and EngineeringShandong University of Science and TechnologyQingdaoChina
  4. 4.National Engineering Laboratory for Digital and Material Technology of Stomatology, National Clinical Research Center for Oral DiseasesBeijing Key Laboratory of Digital StomatologyBeijingChina

Personalised recommendations