Science China Materials

, Volume 61, Issue 9, pp 1245–1247 | Cite as

Brightening and controlling dark excitons in monolayer TMDCs

  • Qing-Hai Tan
  • Jun ZhangEmail author


  1. 1.
    Ye Z, Cao T, O’Brien K, et al. Probing excitonic dark states in single-layer tungsten disulphide. Nature, 2014, 513: 214–218CrossRefGoogle Scholar
  2. 2.
    Dery H, Song Y. Polarization analysis of excitons in monolayer and bilayer transition-metal dichalcogenides. Phys Rev B, 2015, 92: 125431CrossRefGoogle Scholar
  3. 3.
    Echeverry JP, Urbaszek B, Amand T, et al. Splitting between bright and dark excitons in transition metal dichalcogenide monolayers. Phys Rev B, 2016, 93: 121107CrossRefGoogle Scholar
  4. 4.
    Nirmal M, Norris DJ, Kuno M, et al. Observation of the “dark exciton” in CdSe quantum dots. Phys Rev Lett, 1995, 75: 3728–3731CrossRefGoogle Scholar
  5. 5.
    Heindel T, Thoma A, Schwartz I, et al. Accessing the dark exciton spin in deterministic quantum-dot microlenses. APL Photonics, 2017, 2: 121303CrossRefGoogle Scholar
  6. 6.
    Mak KF, Lee C, Hone J, et al. Atomically thin MoS2: A new directgap semiconductor. Phys Rev Lett, 2010, 105: 136805CrossRefGoogle Scholar
  7. 7.
    Molas MR, Faugeras C, Slobodeniuk AO, et al. Brightening of dark excitons in monolayers of semiconducting transition metal dichalcogenides. 2D Mater, 2017, 4: 021003CrossRefGoogle Scholar
  8. 8.
    Zhang XX, Cao T, Lu Z, et al. Magnetic brightening and control of dark excitons in monolayer WSe2. Nat Nanotechnol, 2017, 12: 883–888CrossRefGoogle Scholar
  9. 9.
    Peng K, Wu S, Tang J, et al. Probing the dark-exciton states of a single quantum dot using photocurrent spectroscopy in a magnetic field. Phys Rev Appl, 2017, 8: 064018CrossRefGoogle Scholar
  10. 10.
    Zhou Y, Scuri G, Wild DS, et al. Probing dark excitons in atomically thin semiconductors via near-field coupling to surface plasmon polaritons. Nat Nanotechnol, 2017, 12: 856–860CrossRefGoogle Scholar
  11. 11.
    Robert C, Amand T, Cadiz F, et al. Fine structure and lifetime of dark excitons in transition metal dichalcogenide monolayers. Phys Rev B, 2017, 96: 155423CrossRefGoogle Scholar
  12. 12.
    Wang G, Robert C, Glazov MM, et al. In-plane propagation of light in transition metal dichalcogenide monolayers: optical selection rules. Phys Rev Lett, 2017, 119: 047401CrossRefGoogle Scholar
  13. 13.
    Park KD, Jiang T, Clark G, et al. Radiative control of dark excitons at room temperature by nano-optical antenna-tip Purcell effect. Nat Nanotechnol, 2018, 13: 59–64CrossRefGoogle Scholar
  14. 14.
    Tan QH, Sun YJ, Liu XL, et al. Observation of forbidden phonons, Fano resonance and dark excitons by resonance Raman scattering in few-layer WS2. 2D Mater, 2017, 4: 031007CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.State Key Laboratory of Superlattices and Microstructures, Institute of SemiconductorsChinese Academy of SciencesBeijingChina
  2. 2.CAS Center of Excellence in Topological Quantum Computation, College of Materials Science and Opto-Electronic TechnologyUniversity of Chinese Academy of SciencesBeijingChina

Personalised recommendations