Science China Materials

, Volume 62, Issue 1, pp 95–102 | Cite as

BiOCl/ultrathin polyaniline core/shell nanosheets with a sensitization mechanism for efficient visible-light-driven photocatalysis

  • Yonghua Tang (唐永华)
  • Peng Zhou (周鹏)
  • Kai Wang (王凯)
  • Fei Lin (林斐)
  • Jianping Lai (赖建平)
  • Yuguang Chao (晁玉广)
  • Hongxing Li (李红星)Email author
  • Shaojun Guo (郭少军)Email author


Photocatalytic technology holds great promise in renewable energy and environmental protection. Herein, we report the synthesis of a class of polyaniline-sensitized BiOCl core/shell nanosheets with visible-light photocatalytic activity by a one-step oxidative polymerization method and show how the hybrid nanosheet boosts the photocatalytic activity and stability for degradation of Rhodamine B (RhB). In this unique structure, the ultrathin polyaniline (PANI) as a shell with the thickness of about 1–2 nm, can widen the response of the catalyst to visible light to boost photocatalysis and the BiOCl core can promote the separation of photogenerated carriers from the PANI. We demonstrate that the optimized BiOCl/PANI core/shell photocatalyst shows nearly three times higher photocatalytic activity for the degradation of RhB than pure BiOCl and also shows high stability. This work provides a new strategy for the design of a highly efficient hybrid photocatalyst driven by visible light.


BiOCl core/shell nanosheets photocatalysis polyaniline 



光催化技术在可再生能源和环境保护方面有巨大的潜力. 本文通过一步氧化聚合法合成了一种超薄聚苯胺壳敏化氯氧化铋核纳米片结构. 该结构中约1–2纳米厚的超薄聚苯胺壳可以促进催化剂对可见光的响应, 氯氧化铋核可以促进聚苯胺中光生载流子的分离, 在可见光驱动下对于降解罗丹明B具有较高的光催化活性和稳定性. 优化后的氯氧化铋/超薄聚苯胺核壳催化剂的光催化降解罗丹明B的活性比纯氯氧化铋高出近三倍, 且稳定性更高. 本工作为设计可见光驱动的高效混合光催化剂提供了一种新的策略.



This work was supported by the National Natural Science Foundation of China (51772255), Hunan Natural Science Foundation (2016JJ3123), the National Key Research and Development Program of China (2016YFB0100201) and the start-up supports from Peking University and Young Thousand Talented Program.

Supplementary material

40843_2018_9284_MOESM1_ESM.pdf (1 mb)
BiOCl/ultrathin polyaniline core/shell nanosheets with a sensitization mechanism for efficient visible-light-driven photocatalysis


  1. 1.
    Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode. Nature, 1972, 238: 37–38CrossRefGoogle Scholar
  2. 2.
    Nakata K, Fujishima A. TiO2 photocatalysis: Design and applications. J Photochem Photobiol C-Photochem Rev, 2012, 13: 169–189CrossRefGoogle Scholar
  3. 3.
    Chen C, Ma W, Zhao J. Semiconductor-mediated photodegradation of pollutants under visible-light irradiation. Chem Soc Rev, 2010, 39: 4206CrossRefGoogle Scholar
  4. 4.
    Chen X, Shen S, Guo L, et al. Semiconductor-based photocatalytic hydrogen generation. Chem Rev, 2010, 110: 6503–6570CrossRefGoogle Scholar
  5. 5.
    Radoičić M, Šaponjić Z, Janković IA, et al. Improvements to the photocatalytic efficiency of polyaniline modified TiO2 nanoparticles. Appl Catal B-Environ, 2013, 136-137: 133–139CrossRefGoogle Scholar
  6. 6.
    Xiao F, Zhou W, Sun B, et al. Engineering oxygen vacancy on rutile TiO2 for efficient electron-hole separation and high solardriven photocatalytic hydrogen evolution. Sci China Mater, 2018, 61: 822–830CrossRefGoogle Scholar
  7. 7.
    Yu Q, Lin R, Jiang L, et al. Fabrication and photocatalysis of ZnO nanotubes on transparent conductive graphene-based flexible substrates. Sci China Mater, 2018, 61: 1007–1011CrossRefGoogle Scholar
  8. 8.
    Pei Z, Ding L, Lu M, et al. Synergistic effect in polyaniline-hybrid defective ZnO with enhanced photocatalytic activity and stability. J Phys Chem C, 2014, 118: 9570–9577CrossRefGoogle Scholar
  9. 9.
    Jiang R, Yao J, Zhu H, et al. Effective decolorization of Congo red in aqueous solution by adsorption and photocatalysis using novel magnetic alginate/γ-Fe2O3/CdS nanocomposite. Desalination Water Treatment, 2014, 52: 238–247CrossRefGoogle Scholar
  10. 10.
    Kudo A, Sekizawa M. Photocatalytic H2 evolution under visible light irradiation on Ni-doped ZnS photocatalyst. Chem Commun, 2000, 15: 1371–1372CrossRefGoogle Scholar
  11. 11.
    Xiang Q, Yu J, Jaroniec M. Synergetic effect of MoS2 and graphene as cocatalysts for enhanced photocatalytic H2 production activity of TiO2 nanoparticles. J Am Chem Soc, 2012, 134: 6575–6578CrossRefGoogle Scholar
  12. 12.
    Yu J, Dai G, Huang B. Fabrication and characterization of visiblelight-driven plasmonic photocatalyst Ag/AgCl/TiO2 nanotube arrays. J Phys Chem C, 2009, 113: 16394–16401CrossRefGoogle Scholar
  13. 13.
    Wang P, Huang B, Zhang X, et al. Highly efficient visible-light plasmonic photocatalyst Ag@AgBr. Chem Eur J, 2009, 15: 1821–1824CrossRefGoogle Scholar
  14. 14.
    Wang X, Maeda K, Thomas A, et al. A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat Mater, 2008, 8: 76–80CrossRefGoogle Scholar
  15. 15.
    Zhou L, Zhang W, Chen L, et al. A novel ternary visible-lightdriven photocatalyst AgCl/Ag3PO4/g-C3N4: Synthesis, characterization, photocatalytic activity for antibiotic degradation and mechanism analysis. Catal Commun, 2017, 100: 191–195CrossRefGoogle Scholar
  16. 16.
    Shi R, Cao Y, Bao Y, et al. Self-assembled Au/CdSe nanocrystal clusters for plasmon-mediated photocatalytic hydrogen evolution. Adv Mater, 2017, 29: 1700803CrossRefGoogle Scholar
  17. 17.
    Yu H, Shi R, Zhao Y, et al. Alkali-assisted synthesis of nitrogen deficient graphitic carbon nitride with tunable band structures for efficient visible-light-driven hydrogen evolution. Adv Mater, 2017, 29: 1605148CrossRefGoogle Scholar
  18. 18.
    Zhao Y, Zhao Y, Waterhouse GIN, et al. Layered-double-hydroxide nanosheets as efficient visible-light-driven photocatalysts for dinitrogen fixation. Adv Mater, 2017, 29: 1703828CrossRefGoogle Scholar
  19. 19.
    Han C, Li J, Ma Z, et al. Black phosphorus quantum dot/g-C3N4 composites for enhanced CO2 photoreduction to CO. Sci China Mater, 2018, doi: 10.1007/s40843-018-9245-yGoogle Scholar
  20. 20.
    Zhang X, Ai Z, Jia F, et al. Generalized one-pot synthesis, characterization, and photocatalytic activity of hierarchical BiOX (X = Cl, Br, I) nanoplate microspheres. J Phys Chem C, 2008, 112: 747–753CrossRefGoogle Scholar
  21. 21.
    Zhu Y, Xue J, Xu T, et al. Enhanced photocatalytic activity of magnetic core–shell Fe3O4@Bi2O3–RGO heterojunctions for quinolone antibiotics degradation under visible light. J Mater Sci-Mater Electron, 2017, 28: 8519–8528CrossRefGoogle Scholar
  22. 22.
    Kanigaridou Y, Petala A, Frontistis Z, et al. Solar photocatalytic degradation of bisphenol A with CuOx/BiVO4: Insights into the unexpectedly favorable effect of bicarbonates. Chem Eng J, 2017, 318: 39–49CrossRefGoogle Scholar
  23. 23.
    Li H, Shi J, Zhao K, et al. Sustainable molecular oxygen activation with oxygen vacancies on the {001} facets of BiOCl nanosheets under solar light. Nanoscale, 2014, 6: 14168–14173CrossRefGoogle Scholar
  24. 24.
    Li J, Li H, Zhan G, et al. Solar water splitting and nitrogen fixation with layered bismuth oxyhalides. Acc Chem Res, 2017, 50: 112–121CrossRefGoogle Scholar
  25. 25.
    Singh S, Mahalingam H, Singh PK. Polymer-supported titanium dioxide photocatalysts for environmental remediation: A review. Appl Catal A-General, 2013, 462-463: 178–195CrossRefGoogle Scholar
  26. 26.
    Reddy KR, Hassan M, Gomes VG. Hybrid nanostructures based on titanium dioxide for enhanced photocatalysis. Appl Catal A-General, 2015, 489: 1–16CrossRefGoogle Scholar
  27. 27.
    Tong L, Liu J, Boyer SM, et al. Vapor-phase polymerized poly(3,4-ethylenedioxythiophene) (PEDOT)/TiO2 composite fibers as electrode materials for supercapacitors. Electrochim Acta, 2017, 224: 133–141CrossRefGoogle Scholar
  28. 28.
    Tanwar R, Kumar S, Mandal UK. Photocatalytic activity of PANI/Fe0 doped BiOCl under visible light-degradation of Congo red dye. J Photochem Photobiol A-Chem, 2017, 333: 105–116CrossRefGoogle Scholar
  29. 29.
    Wang Q, Hui J, Li J, et al. Photodegradation of methyl orange with PANI-modified BiOCl photocatalyst under visible light irradiation. Appl Surf Sci, 2013, 283: 577–583CrossRefGoogle Scholar
  30. 30.
    Xiong J, Cheng G, Li G, et al. Well-crystallized square-like 2D BiOCl nanoplates: mannitol-assisted hydrothermal synthesis and improved visible-light-driven photocatalytic performance. RSC Adv, 2011, 1: 1542CrossRefGoogle Scholar
  31. 31.
    Li X, Wang G, Li X, et al. Surface properties of polyaniline/nano-TiO2 composites. Appl Surf Sci, 2004, 229: 395–401CrossRefGoogle Scholar
  32. 32.
    Gao F, Zeng D, Huang Q, et al. Chemically bonded graphene/BiOCl nanocomposites as high-performance photocatalysts. Phys Chem Chem Phys, 2012, 14: 10572–10578CrossRefGoogle Scholar
  33. 33.
    Finlayson AP, Tsaneva VN, Lyons L, et al. Evaluation of Bi-Woxides for visible light photocatalysis. Phys Stat Sol (A), 2006, 203: 327–335CrossRefGoogle Scholar
  34. 34.
    Peng S, Li L, Zhu P, et al. Controlled synthesis of BiOCl hierarchical self-assemblies with highly efficient photocatalytic properties. Chem Asian J, 2013, 8: 258–268CrossRefGoogle Scholar
  35. 35.
    Cheng G, Xiong J, Stadler FJ. Facile template-free and fast refluxing synthesis of 3D desertrose-like BiOCl nanoarchitectures with superior photocatalytic activity. New J Chem, 2013, 37: 3207CrossRefGoogle Scholar
  36. 36.
    Wang X, Wang Q, Li F, et al. Novel BiOCl–C3N4 heterojunction photocatalysts: In situ preparation via an ionic-liquid-assisted solvent-thermal route and their visible-light photocatalytic activities. Chem Eng J, 2013, 234: 361–371CrossRefGoogle Scholar
  37. 37.
    Lin W, Yu X, Shen Y, et al. Carbon dots/BiOCl films with enhanced visible light photocatalytic performance. J Nanopart Res, 2017, 19: 56CrossRefGoogle Scholar
  38. 38.
    Zheng Y, Duan F, Chen M, et al. Synthetic Bi2O2CO3 nanostructures: Novel photocatalyst with controlled special surface exposed. J Mol Catal A-Chem, 2010, 317: 34–40CrossRefGoogle Scholar
  39. 39.
    Serrano B, de Lasa H. Photocatalytic degradation of water organic pollutants: pollutant reactivity and kinetic modeling. Chem Eng Sci, 1999, 54: 3063–3069CrossRefGoogle Scholar
  40. 40.
    An X, Wang Y, Lin J, et al. Heterojunction: important strategy for constructing composite photocatalysts. Sci Bull, 2017, 62: 599–601CrossRefGoogle Scholar
  41. 41.
    Salem MA, Al-Ghonemiy AF, Zaki AB. Photocatalytic degradation of allura red and quinoline yellow with polyaniline/TiO2 nanocomposite. Appl Catal B-Environ, 2009, 91: 59–66CrossRefGoogle Scholar
  42. 42.
    Ma X, Ni X. Fabrication of polythiophene–TiO2 heterojunction solar cells coupled with upconversion nanoparticles. J Mater Sci-Mater Electron, 2015, 26: 1129–1135CrossRefGoogle Scholar
  43. 43.
    Li W, Tian Y, Zhao C, et al. Synthesis of magnetically separable Fe3O4@PANI/TiO2 photocatalyst with fast charge migration for photodegradation of EDTA under visible-light irradiation. Chem Eng J, 2016, 303: 282–291CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Yonghua Tang (唐永华)
    • 1
    • 2
  • Peng Zhou (周鹏)
    • 2
  • Kai Wang (王凯)
    • 2
  • Fei Lin (林斐)
    • 2
    • 3
  • Jianping Lai (赖建平)
    • 2
  • Yuguang Chao (晁玉广)
    • 2
  • Hongxing Li (李红星)
    • 1
    Email author
  • Shaojun Guo (郭少军)
    • 2
    Email author
  1. 1.School of Physics and Optoelectronic EngineeringXiangtan UniversityXiangtanChina
  2. 2.Department of Materials Science and Engineering, College of EngineeringPeking UniversityBeijingChina
  3. 3.School of Materials Science and EngineeringOcean University of ChinaQingdaoChina

Personalised recommendations