Advertisement

Science China Materials

, Volume 62, Issue 1, pp 65–73 | Cite as

Combination of solution-phase process and halide exchange for all-inorganic, highly stable CsPbBr3 perovskite nanowire photodetector

  • Junpeng Zeng (曾俊鹏)
  • Hai Zhou (周海)
  • Ronghuan Liu (刘荣桓)
  • Hao Wang (王浩)
Articles
  • 191 Downloads

Abstract

The synthesis of high quality all-inorganic perovskite nanowires needs the harsh conditions, complex process and precision instruments, which are not beneficial to their extensive application. Here, all-inorganic perovskite cesium lead bromine (CsPbBr3) nanowires (NWs) are demonstrated with the combination of solution-phase process and halide exchange technology. A metal-semiconductor-metal structure CsPbBr3 nanowire photodetector was prepared, which showed a detectivity as high as 1.7×1011 cm Hz1/2 W−1 (Jones) with rapid response time (The rise and decay time are 10 ms and 22 ms, respectively). Moreover, our photodetectors have high stability under ultraviolet (UV) light, high temperature and humidity.

Keywords

solution-phase process halide exchange perovskite nanowires photodetector 

结合液相合成与离子交换技术制备的全无机高稳定的铯铅溴钙钛矿纳米线光电探测器

摘要

高质量全无机钙钛矿纳米线的合成往往依赖于苛刻的条件、 复杂的工艺和精密仪器, 这不利于其广泛的应用. 本文首次将液相法和卤素交换技术相结合, 合成出了全无机钙钛矿铯铅(CsPbBr3)纳米线, 并详细阐述了在不同条件下合成的CsPbBr3纳米线薄膜的形貌和性能. 通过场发射扫描电子显微镜和X射线衍射等分析技术, 表征了纳米线的形貌和晶体结构. 最后通过工艺优化, 制备了最佳的金属-半导体-金属结构CsPbBr3纳米线光电探测器, 其探测度高(1.7×1011 cm Hz1/2 W−1 (Jones)), 响应时间快(上升和衰减时间分别为10毫秒和22毫秒). 此外, 我们的光电探测器对紫外光(UV), 温度和湿度具有高稳定性, 因此具有巨大的应用潜力.

Notes

Acknowledgements

This work is supported by the National Natural Science Foundation of China (51372075).

Supplementary material

40843_2018_9278_MOESM1_ESM.pdf (5 mb)
Supplementary material, approximately 4.95 MB.

References

  1. 1.
    Oh N, Kim BH, Cho SY, et al. Double-heterojunction nanorod light-responsive LEDs for display applications. Science, 2017, 355: 616–619CrossRefGoogle Scholar
  2. 2.
    Eperon GE, Burlakov VM, Docampo P, et al. Morphological control for high performance, solution-processed planar heterojunction perovskite solar cells. Adv Funct Mater, 2014, 24: 151–157CrossRefGoogle Scholar
  3. 3.
    Zhou H, Gui P, Yu Q, et al. Self-powered, visible-blind ultraviolet photodetector based on n-ZnO nanorods/i-MgO/p-GaN structure light-emitting diodes. J Mater Chem C, 2015, 3: 990–994CrossRefGoogle Scholar
  4. 4.
    Yao X, Liang J, Li T, et al. Electron transport layer driven to improve the open-circuit voltage of CH3NH3PbI3 planar perovskite solar cells. Sci China Mater, 2018, 61: 65–72CrossRefGoogle Scholar
  5. 5.
    Bush KA, Palmstrom AF, Yu ZJ, et al. 23.6%-efficient monolithic perovskite/silicon tandem solar cells with improved stability. Nat Energy, 2017, 2: 17009CrossRefGoogle Scholar
  6. 6.
    Conings B, Drijkoningen J, Gauquelin N, et al. Intrinsic thermal instability of methylammonium lead trihalide perovskite. Adv Energy Mater, 2015, 5: 1500477CrossRefGoogle Scholar
  7. 7.
    Leijtens T, Eperon GE, Noel NK, et al. Stability of metal halide perovskite solar cells. Adv Energy Mater, 2015, 5: 1500963CrossRefGoogle Scholar
  8. 8.
    Niu G, Guo X, Wang L. Review of recent progress in chemical stability of perovskite solar cells. J Mater Chem A, 2015, 3: 8970–8980CrossRefGoogle Scholar
  9. 9.
    Philippe B, Park BW, Lindblad R, et al. Chemical and electronic structure characterization of lead halide perovskites and stability behavior under different exposures—a photoelectron spectroscopy investigation. Chem Mater, 2015, 27: 1720–1731CrossRefGoogle Scholar
  10. 10.
    Liang J, Wang C, Wang Y, et al. All-inorganic perovskite solar cells. J Am Chem Soc, 2016, 138: 15829–15832CrossRefGoogle Scholar
  11. 11.
    Ding X, Ren Y, Wu Y, et al. Sequential deposition method fabricating carbonbased fully-inorganic perovskite solar cells. Sci China Mater, 2018, 61: 73–79CrossRefGoogle Scholar
  12. 12.
    Hoye RLZ, Chua MR, Musselman KP, et al. Enhanced performance in fluorene-free organometal halide perovskite light-emitting diodes using tunable, low electron affinity oxide electron injectors. Adv Mater, 2015, 27: 1414–1419CrossRefGoogle Scholar
  13. 13.
    Song J, Li J, Li X, et al. Quantum dot light-emitting diodes based on inorganic perovskite cesium lead halides (CsPbX3). Adv Mater, 2015, 27: 7162–7167CrossRefGoogle Scholar
  14. 14.
    Song J, Xu L, Li J, et al. Monolayer and few-layer all-inorganic perovskites as a new family of two-dimensional semiconductors for printable optoelectronic devices. Adv Mater, 2016, 28: 4861–4869CrossRefGoogle Scholar
  15. 15.
    Tang X, Zu Z, Shao H, et al. All-inorganic perovskite CsPb(Br/I)3 nanorods for optoelectronic application. Nanoscale, 2016, 8: 15158–15161CrossRefGoogle Scholar
  16. 16.
    Li X, Yu D, Chen J, et al. Constructing fast carrier tracks into flexible perovskite photodetectors to greatly improve responsivity. ACS Nano, 2017, 11: 2015–2023CrossRefGoogle Scholar
  17. 17.
    Hu W, Huang W, Yang S, et al. High-performance flexible photodetectors based on high-quality perovskite thin films by a vaporsolution method. Adv Mater, 2017, 29: 1703256CrossRefGoogle Scholar
  18. 18.
    Xue M, Zhou H, Xu Y, et al. High-performance ultraviolet-visible tunable perovskite photodetector based on solar cell structure. Sci China Mater, 2017, 60: 407–414CrossRefGoogle Scholar
  19. 19.
    Wu Y, Wei Y, Huang Y, et al. Capping CsPbBr3 with ZnO to improve performance and stability of perovskite memristors. Nano Res, 2017, 10: 1584–1594CrossRefGoogle Scholar
  20. 20.
    Li X, Cao F, Yu D, et al. All inorganic halide perovskites nanosystem: synthesis, structural features, optical properties and optoelectronic applications. Small, 2017, 13: 1603996CrossRefGoogle Scholar
  21. 21.
    Wang Y, Li X, Nalla V, et al. Solution-processed low threshold vertical cavity surface emitting lasers from all-inorganic perovskite nanocrystals. Adv Funct Mater, 2017, 27: 1605088CrossRefGoogle Scholar
  22. 22.
    Bekenstein Y, Koscher BA, Eaton SW, et al. Highly luminescent colloidal nanoplates of perovskite cesium lead halide and their oriented assemblies. J Am Chem Soc, 2015, 137: 16008–16011CrossRefGoogle Scholar
  23. 23.
    Protesescu L, Yakunin S, Bodnarchuk MI, et al. Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut. Nano Lett, 2015, 15: 3692–3696CrossRefGoogle Scholar
  24. 24.
    Zhang D, Eaton SW, Yu Y, et al. Solution-phase synthesis of cesium lead halide perovskite nanowires. J Am Chem Soc, 2015, 137: 9230–9233CrossRefGoogle Scholar
  25. 25.
    Zhu P, Gu S, Shen X, et al. Direct conversion of perovskite thin films into nanowires with kinetic control for flexible optoelectronic devices. Nano Lett, 2016, 16: 871–876CrossRefGoogle Scholar
  26. 26.
    Amgar D, Stern A, Rotem D, et al. Tunable length and optical properties of CsPbX3 (X = Cl, Br, I) nanowires with a few unit cells. Nano Lett, 2017, 17: 1007–1013CrossRefGoogle Scholar
  27. 27.
    Zhuo S, Zhang J, Shi Y, et al. Self-template-directed synthesis of porous perovskite nanowires at room temperature for high-performance visible-light photodetectors. Angew Chem Int Ed, 2015, 54: 5693–5696CrossRefGoogle Scholar
  28. 28.
    Chen J, Fu Y, Samad L, et al. Vapor-phase epitaxial growth of aligned nanowire networks of cesium lead halide perovskites (CsPbX3, X = Cl, Br, I). Nano Lett, 2017, 17: 460–466CrossRefGoogle Scholar
  29. 29.
    Zhang X, Yang S, Zhou H, et al. Perovskite-erbium silicate nanosheet hybrid waveguide photodetectors at the near-infrared telecommunication band. Adv Mater, 2017, 29: 1604431CrossRefGoogle Scholar
  30. 30.
    Shoaib M, Zhang X, Wang X, et al. Directional growth of ultralong CsPbBr3 perovskite nanowires for high-performance photodetectors. J Am Chem Soc, 2017, 139: 15592–15595CrossRefGoogle Scholar
  31. 31.
    Zhang D, Yu Y, Bekenstein Y, et al. Ultrathin colloidal cesium lead halide perovskite nanowires. J Am Chem Soc, 2016, 138: 13155–13158CrossRefGoogle Scholar
  32. 32.
    Wang C, Zhang Y, Wang A, et al. Controlled synthesis of composition tunable formamidinium cesium double cation lead halide perovskite nanowires and nanosheets with improved stability. Chem Mater, 2017, 29: 2157–2166CrossRefGoogle Scholar
  33. 33.
    Lai M, Kong Q, Bischak CG, et al. Structural, optical, and electrical properties of phase-controlled cesium lead iodide nanowires. Nano Res, 2017, 10: 1107–1114CrossRefGoogle Scholar
  34. 34.
    Liang J, Wang C, Zhao P, et al. Solution synthesis and phase control of inorganic perovskites for high-performance optoelectronic devices. Nanoscale, 2017, 9: 11841–11845CrossRefGoogle Scholar
  35. 35.
    Eaton SW, Lai M, Gibson NA, et al. Lasing in robust cesium lead halide perovskite nanowires. Proc Natl Acad Sci USA, 2016, 113: 1993–1998CrossRefGoogle Scholar
  36. 36.
    Zhang T, Long M, Yan K, et al. Crystallinity preservation and ion migration suppression through dual ion exchange strategy for stable mixed perovskite solar cells. Adv Energy Mater, 2017, 7: 1700118CrossRefGoogle Scholar
  37. 37.
    Liao JF, Li WG, Rao HS, et al. Inorganic cesium lead halide CsPbX3 nanowires for long-term stable solar cells. Sci China Mater, 2017, 60: 285–294CrossRefGoogle Scholar
  38. 38.
    Trigui A, Abid H, Mlayah A, et al. Optical properties and vibrational studies of a new self assembled organic–inorganic nanowire crystal (C6H13N3)2Pb3I10. Synth Met, 2012, 162: 1731–1736CrossRefGoogle Scholar
  39. 39.
    Dualeh A, Tétreault N, Moehl T, et al. Effect of annealing temperature on film morphology of organic-inorganic hybrid pervoskite solid-state solar cells. Adv Funct Mater, 2014, 24: 3250–3258CrossRefGoogle Scholar
  40. 40.
    Kulbak M, Gupta S, Kedem N, et al. Cesium enhances long-term stability of lead bromide perovskite-based solar cells. J Phys Chem Lett, 2016, 7: 167–172CrossRefGoogle Scholar
  41. 41.
    Saliba M, Matsui T, Seo JY, et al. Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency. Energy Environ Sci, 2016, 9: 1989–1997CrossRefGoogle Scholar
  42. 42.
    Diroll BT, Nedelcu G, Kovalenko MV, et al. High-temperature photoluminescence of CsPbX3 (X = Cl, Br, I) nanocrystals. Adv Funct Mater, 2017, 27: 1606750CrossRefGoogle Scholar
  43. 43.
    Gong X, Tong M, Xia Y, et al. High-detectivity polymer photodetectors with spectral response from 300 nm to 1450 nm. Science, 2009, 325: 1665–1667CrossRefGoogle Scholar
  44. 44.
    Ding J, Du S, Zuo Z, et al. High detectivity and rapid response in perovskite CsPbBr3 single-crystal photodetector. J Phys Chem C, 2017, 121: 4917–4923CrossRefGoogle Scholar
  45. 45.
    Saidaminov MI, Haque MA, Almutlaq J, et al. Inorganic lead halide perovskite single crystals: phase-selective low-temperature growth, carrier transport properties, and self-powered photodetection. Adv Opt Mater, 2017, 5: 1600704CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Hubei Key Laboratory of Ferroelectric and Dielectric Materials and Devices, Faculty of Physics and Electronic ScienceHubei UniversityWuhanChina

Personalised recommendations