Advertisement

Science China Materials

, Volume 61, Issue 9, pp 1218–1224 | Cite as

Enhanced thermoelectric performance of Na-doped PbTe synthesized under high pressure

  • Bowen Cai (蔡博文)
  • Jianghua Li (李江华)
  • Hao Sun (孙浩)
  • Long Zhang (张隆)
  • Bo Xu (徐波)
  • Wentao Hu (胡文涛)
  • Dongli Yu (于栋利)
  • Julong He (何巨龙)
  • Zhisheng Zhao (赵智胜)
  • Zhongyuan Liu (柳忠元)
  • Yongjun Tian (田永君)
Articles

Abstract

Despite an effective p-type dopant for PbTe, the low solubility of Na limits the fully optimization of thermoelectric properties of Na-doped PbTe. In this work, Na-doped PbTe was synthesized under high pressure. The formation of the desired rocksalt phase with substantially increased Na content leads to a high carrier concentration of 3.2×1020 cm−3 for Na0.03Pb0.97Te. Moreover, dense in-grain dislocations are identified from the microstructure analysis. Benefited from the improved power factor and greatly suppressed lattice thermal conductivity, the maximal ZT of 1.7 is achieved in the optimal Na0.03Pb0.97Te. Current work thus designates the advantage of high pressure in synthesizing PbTe-based thermoelectric materials.

Keywords

lead telluride high pressure synthesis carrier concentration dislocation 

钠掺杂碲化铅热电材料的高压合成及性能研究

摘要

尽管钠可以对碲化铅进行有效的p型掺杂, 但其较低的固溶度限制了对掺杂样品热电性能的全面优化. 本工作采用高压合成方法合 成钠掺杂的碲化铅样品. 结构及成分分析表明样品具有典型的岩盐矿结构, 且钠的含量显著提高. 相应的, Na0.03Pb0.97Te样品的载流子浓度 也提高至3.2×1020cm−3. 此外, 显微结构分析确认在高压合成样品的晶粒中形成了高密度的位错. 受益于增强的功率因数和大大抑制晶格 热导率, Na0.03Pb0.97Te样品的热电优值达到1.7. 该工作展示了压力在合成碲化铅基热电材料中的优势.

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (51525205, 51421091, and 51722209), and the Key Basic Research Project of Hebei (14961013D).

References

  1. 1.
    Shi X, Chen L, Uher C. Recent advances in high-performance bulk thermoelectric materials. Int Mater Rev, 2016, 61: 379–415CrossRefGoogle Scholar
  2. 2.
    Tan G, Zhao LD, Kanatzidis MG. Rationally designing high-performance bulk thermoelectric materials. Chem Rev, 2016, 116: 12123–12149CrossRefGoogle Scholar
  3. 3.
    He J, Tritt TM. Advances in thermoelectric materials research: Looking back and moving forward. Science, 2017, 357: eaak9997CrossRefGoogle Scholar
  4. 4.
    Yang L, Chen ZG, Dargusch MS, et al. High performance thermoelectric materials: progress and their applications. Adv Energy Mater, 2017, 7: 1701797Google Scholar
  5. 5.
    Slack GA. New Materials and Performance Limits for Thermoelectric Cooling. CRC Handbook of Thermoelectrics, 1995, 407–440Google Scholar
  6. 6.
    Pei Y, Shi X, LaLonde A, et al. Convergence of electronic bands for high performance bulk thermoelectrics. Nature, 2011, 473: 66–69CrossRefGoogle Scholar
  7. 7.
    Hong M, Chen ZG, Yang L, et al. Enhancing the thermoelectric performance of SnSe1−xTex nanoplates through band engineering. J Mater Chem A, 2017, 5: 10713–10721CrossRefGoogle Scholar
  8. 8.
    Biswas K, He J, Blum ID, et al. High-performance bulk thermoelectrics with all-scale hierarchical architectures. Nature, 2012, 489: 414–418CrossRefGoogle Scholar
  9. 9.
    Poudel B, Hao Q, Ma Y, et al. High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys. Science, 2008, 320: 634–638CrossRefGoogle Scholar
  10. 10.
    Zebarjadi M, Joshi G, Zhu G, et al. Power factor enhancement by modulation doping in bulk nanocomposites. Nano Lett, 2011, 11: 2225–2230CrossRefGoogle Scholar
  11. 11.
    Yu B, Zebarjadi M, Wang H, et al. Enhancement of thermoelectric properties by modulation-doping in silicon germanium alloy nanocomposites. Nano Lett, 2012, 12: 2077–2082CrossRefGoogle Scholar
  12. 12.
    Sun F-H, Dong J, Dey S, et al. Enhanced thermoelectric performance of Cu12Sb4S13-δ tetrahedrite via nickel doping. Sci China Mater, 2018, DOI: 10.1007/s40843-018-9241-xGoogle Scholar
  13. 13.
    Sun X, Wei Y, Li J, et al. Ultralight conducting PEDOT:PSS/carbon nanotube aerogels doped with silver for thermoelectric materials. Sci China Mater, 2017, 60: 159–166CrossRefGoogle Scholar
  14. 14.
    Pei Y, Lensch-Falk J, Toberer ES, et al. High thermoelectric performance in PbTe due to large nanoscale Ag2Te precipitates and La doping. Adv Funct Mater, 2011, 21: 241–249CrossRefGoogle Scholar
  15. 15.
    LaLonde AD, Pei Y, Wang H, et al. Lead telluride alloy thermoelectrics. Mater Today, 2011, 14: 526–532CrossRefGoogle Scholar
  16. 16.
    Pei Y, Gibbs ZM, Gloskovskii A, et al. Optimum carrier concentration in n-Type PbTe thermoelectrics. Adv Energy Mater, 2014, 4: 1400486CrossRefGoogle Scholar
  17. 17.
    Pei Y, LaLonde A, Iwanaga S, et al. High thermoelectric figure of merit in heavy hole dominated PbTe. Energy Environ Sci, 2011, 4: 2085–2089CrossRefGoogle Scholar
  18. 18.
    Heremans JP, Wiendlocha B, Chamoire AM. Resonant levels in bulk thermoelectric semiconductors. Energy Environ Sci, 2012, 5: 5510–5530CrossRefGoogle Scholar
  19. 19.
    Heremans JP, Jovovic V, Toberer ES, et al. Enhancement of thermoelectric efficiency in PbTe by distortion of the electronic density of states. Science, 2008, 321: 554–557CrossRefGoogle Scholar
  20. 20.
    Jian Z, Chen Z, Li W, et al. Significant band engineering effect of YbTe for high performance thermoelectric PbTe. J Mater Chem C, 2015, 3: 12410–12417CrossRefGoogle Scholar
  21. 21.
    Pei Y, Wang H, Snyder GJ. Band engineering of thermoelectric materials. Adv Mater, 2012, 24: 6125–6135CrossRefGoogle Scholar
  22. 22.
    Ginting D, Lin CC, Rathnam L, et al. High thermoelectric performance due to nano-inclusions and randomly distributed interface potentials in N-type (PbTe0.93−xSe0.07Clx)0.93(PbS)0.07 composites. J Mater Chem A, 2017, 5: 13535–13543CrossRefGoogle Scholar
  23. 23.
    Chen Z, Ge B, Li W, et al. Vacancy-induced dislocations within grains for high-performance PbSe thermoelectrics. Nat Commun, 2017, 8: 13828CrossRefGoogle Scholar
  24. 24.
    Chen Z, Jian Z, Li W, et al. Lattice dislocations enhancing thermoelectric PbTe in addition to band convergence. Adv Mater, 2017, 29: 1606768CrossRefGoogle Scholar
  25. 25.
    Yang L, Chen ZG, Hong M, et al. n-type Bi-doped PbTe nanocubes with enhanced thermoelectric performance. Nano Energy, 2017, 31: 105–112CrossRefGoogle Scholar
  26. 26.
    Yu Y, Zhang S, Mio AM, et al. Ag-segregation to dislocations in PbTe-based thermoelectric materials. ACS Appl Mater Interfaces, 2018, 10: 3609–3615CrossRefGoogle Scholar
  27. 27.
    He J, Zhao LD, Zheng JC, et al. Role of sodium doping in lead chalcogenide thermoelectrics. J Am Chem Soc, 2013, 135: 4624–4627CrossRefGoogle Scholar
  28. 28.
    Yamini SA, Ikeda T, Lalonde A, et al. Rational design of p-type thermoelectric PbTe: temperature dependent sodium solubility. J Mater Chem A, 2013, 1: 8725–8730CrossRefGoogle Scholar
  29. 29.
    Cai B, Li J, Sun H, et al. Sodium doped polycrystalline SnSe: High pressure synthesis and thermoelectric properties. J Alloys Compd, 2017, 727: 1014–1019CrossRefGoogle Scholar
  30. 30.
    Kang Y, Zhang Q, Fan C, et al. High pressure synthesis and thermoelectric properties of polycrystalline Bi2Se3. J Alloys Compd, 2017, 700: 223–227CrossRefGoogle Scholar
  31. 31.
    Zhu PW, Jia X, Chen HY, et al. Giant improved thermoelectric properties in PbTe by HPHT at room temperature. Chem Phys Lett, 2002, 359: 89–94CrossRefGoogle Scholar
  32. 32.
    Yang M, Zhu H, Li H, et al. Electrical transport and thermoelectric properties of PbTe1−xIx synthesized by high pressure and high temperature. J Alloys Compd, 2017, 696: 161–165CrossRefGoogle Scholar
  33. 33.
    Zhang J, Xu B, Wang LM, et al. High-pressure synthesis of phonon-glass electron-crystal featured thermoelectric LixCo4Sb12. Acta Mater, 2012, 60: 1246–1251CrossRefGoogle Scholar
  34. 34.
    Badding JV. High-pressure synthesis, characterization, and tuning of solid state materials. Annu Rev Mater Sci, 1998, 28: 631–658CrossRefGoogle Scholar
  35. 35.
    Brazhkin VV. High-pressure synthesized materials: treasures and hints. High Pressure Res, 2007, 27: 333–351CrossRefGoogle Scholar
  36. 36.
    Mii H, Senoo M, Fujishiro I. Solid solubility of Si in Al under high pressure. Jpn J Appl Phys, 1976, 15: 777–783CrossRefGoogle Scholar
  37. 37.
    Prinz F, Argon AS. Dislocation cell formation during plastic deformation of copper single crystals. Phys Status Solidi A, 1980, 57: 741–753CrossRefGoogle Scholar
  38. 38.
    Wang H, Bahk JH, Kang C, et al. Large enhancement in the thermoelectric properties of Pb0.98Na0.02Te by optimizing the synthesis conditions. J Mater Chem A, 2013, 1: 11269–11278CrossRefGoogle Scholar
  39. 39.
    Crocker AJ, Rogers LM. Valence band structure of PbTe. J Phys Col, 1968, 29: C4–129–132CrossRefGoogle Scholar
  40. 40.
    Caillat T, Borshchevsky A, Fleurial JP. Properties of single crystalline semiconducting CoSb3. J Appl Phys, 1996, 80: 4442–4449CrossRefGoogle Scholar
  41. 41.
    Yamini SA, Mitchell DRG, Gibbs ZM, et al. Heterogeneous distribution of sodium for high thermoelectric performance of p-type multiphase lead-chalcogenides. Adv Energy Mater, 2015, 5: 1501047CrossRefGoogle Scholar
  42. 42.
    Ravich IUI, Efimova BA, Smirnov IA. Semiconducting lead chalcogenides. New York: Plenum Press, 1970Google Scholar
  43. 43.
    Kim HS, Gibbs ZM, Tang Y, et al. Characterization of Lorenz number with Seebeck coefficient measurement. APL Mater, 2015, 3: 041506CrossRefGoogle Scholar
  44. 44.
    Klemens PG. The Scattering of Low-Frequency Lattice Waves by Static Imperfections. Proc Phys Soc Sec A, 1955, 68: 1113–1128CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Bowen Cai (蔡博文)
    • 1
  • Jianghua Li (李江华)
    • 1
  • Hao Sun (孙浩)
    • 1
  • Long Zhang (张隆)
    • 1
  • Bo Xu (徐波)
    • 1
  • Wentao Hu (胡文涛)
    • 1
  • Dongli Yu (于栋利)
    • 1
  • Julong He (何巨龙)
    • 1
  • Zhisheng Zhao (赵智胜)
    • 1
  • Zhongyuan Liu (柳忠元)
    • 1
  • Yongjun Tian (田永君)
    • 1
  1. 1.State Key Laboratory of Metastable Materials Science and TechnologyYanshan UniversityQinhuangdaoChina

Personalised recommendations