Science China Materials

, Volume 61, Issue 9, pp 1185–1190 | Cite as

Synthesis of ultra-small mordenite zeolite nanoparticles

  • Yi Xu (许义)
  • Xuefeng Shen (申学峰)
  • Cheng Peng (彭程)
  • Yue Ma (马跃)
  • Lu Han (韩璐)
  • Peng Wu (吴鹏)
  • Honggen Peng (彭洪根)Email author
  • Shunai Che (车顺爱)Email author


The mordenite (MOR) nanoparticles (MNPs) with ultra-small crystallites (∼30 nm) were synthesized by using tetraethylammonium bromide (TEAB) as structure directing agent at low temperature (403 K). The formation of MNPs was considered to be due to high concentration of TEAB and occurrence of limiting Ostwald ripening at low temperature. The MNPs exhibited not only higher catalytic activity at low temperature for selective catalytic reduction of NOx but also higher catalytic activity and longer lifetime for disproportionation of toluene than conventional MOR (c-MOR) bulk crystals.


zeolite mordenite nanoparticles catalyst 



本文在一个较低的温度(403 K)下使用四乙基溴化铵(TEAB)为模板剂合成出超小的(30 nm)MOR型分子筛. 超小的产物粒径是由于高浓度的TEAB可以提供更多的晶核以及低温限制了奥氏熟化. 产物在低温区域的NOx选择性催化还原活性远远高于传统MOR型分子筛. 此外, 超小的纳米颗粒减小了物质的传输限制以及较大的比表面积使得其在甲苯歧化反应中具有比传统MOR更高的催化活性和耐失活性.



This work was supported by the National Natural Science Foundation of China (21533002 and 21571128), the National Excellent Doctoral Dissertation of China (201454), and the National Key R&D Program of China (2016YFC0205900).

Supplementary material

40843_2018_9257_MOESM0_ESM.pdf (685 kb)
Synthesis of ultra-small mordenite zeolite nanoparticles


  1. 1.
    Corma A. From microporous to mesoporous molecular sieve materials and their use in catalysis. Chem Rev, 1997, 97: 2373–2420CrossRefGoogle Scholar
  2. 2.
    Davis ME. Ordered porous materials for emerging applications. Nature, 2002, 417: 813–821CrossRefGoogle Scholar
  3. 3.
    Davis ME. Zeolites from a materials chemistry perspective. Chem Mater, 2014, 26: 239–245CrossRefGoogle Scholar
  4. 4.
    Li Y, Yu J. New stories of zeolite structures: their descriptions, determinations, predictions, and evaluations. Chem Rev, 2014, 114: 7268–7316CrossRefGoogle Scholar
  5. 5.
    Mintova S, Gilson JP, Valtchev V. Advances in nanosized zeolites. Nanoscale, 2013, 5: 6693–6703CrossRefGoogle Scholar
  6. 6.
    Xue Z, Ma J, Zhang T, et al. Synthesis of nanosized ZSM-5 zeolite with intracrystalline mesopores. Mater Lett, 2012, 68: 1–3CrossRefGoogle Scholar
  7. 7.
    Ng EP, Chateigner D, Bein T, et al. Capturing ultrasmall EMT zeolite from template-free systems. Science, 2012, 335: 70–73CrossRefGoogle Scholar
  8. 8.
    Awala H, Gilson JP, Retoux R, et al. Template-free nanosized faujasite-type zeolites. Nat Mater, 2015, 14: 447–451CrossRefGoogle Scholar
  9. 9.
    Meier W, Kristallogr Z. The crystal structure of mordenite (ptilolite). Zeitschrift für Kristallographie-Crystalline Mater, 1961, 115: 439–450CrossRefGoogle Scholar
  10. 10.
    Lv A, Xu H, Wu H, et al. Hydrothermal synthesis of high-silica mordenite by dual-templating method. Microporous Mesoporous Mater, 2011, 145: 80–86CrossRefGoogle Scholar
  11. 11.
    Ren L, Guo Q, Zhang H, et al. Organotemplate-free and one-pot fabrication of nano-rod assembled plate-like micro-sized mordenite crystals. J Mater Chem, 2012, 22: 6564–6567CrossRefGoogle Scholar
  12. 12.
    Zhang H, Zhang H, Wang P, et al. Organic template-free synthesis of zeolite mordenite nanocrystals through exotic seed-assisted conversion. RSC Adv, 2016, 6: 47623–47631CrossRefGoogle Scholar
  13. 13.
    Yang Y, Ding J, Xu C, et al. An insight into crystal morphologydependent catalytic properties of MOR-type titanosilicate in liquid- phase selective oxidation. J Catal, 2015, 325: 101–110CrossRefGoogle Scholar
  14. 14.
    Jo C, Jung J, Shin HS, et al. Capping with multivalent surfactants for zeolite nanocrystal synthesis. Angew Chem, 2013, 125: 10198–10201CrossRefGoogle Scholar
  15. 15.
    Kim GJ, Ahn WS. Direct synthesis and characterization of high- SiO2-content mordenites. Zeolites, 1991, 11: 745–750CrossRefGoogle Scholar
  16. 16.
    Buerger MJ, Azaroff LV. The Powder Method in X-Ray Crystallography. New York: McGraw-Hill, 1958Google Scholar
  17. 17.
    Kim SD, Noh SH, Seong KH, et al. Compositional and kinetic study on the rapid crystallization of ZSM-5 in the absence of organic template under stirring. Microporous Mesoporous Mater, 2004, 72: 185–192CrossRefGoogle Scholar
  18. 18.
    Li J, Li Z, Han D, et al. Facile synthesis of SAPO-34 with small crystal size for conversion of methanol to olefins. Powder Tech, 2014, 262: 177–182CrossRefGoogle Scholar
  19. 19.
    Bohström Z, Arstad B, Lillerud KP. Preparation of high silica chabazite with controllable particle size. Microporous Mesoporous Mater, 2014, 195: 294–302CrossRefGoogle Scholar
  20. 20.
    Schmidt JE, Fu D, Deem MW, et al. Template-framework interactions in tetraethylammonium-directed zeolite synthesis. Angew Chem Int Ed, 2016, 55: 16044–16048CrossRefGoogle Scholar
  21. 21.
    Sultana A, Nanba T, Sasaki M, et al. Selective catalytic reduction of NOx with NH3 over different copper exchanged zeolites in the presence of decane. Catal Today, 2011, 164: 495–499CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Yi Xu (许义)
    • 1
  • Xuefeng Shen (申学峰)
    • 1
  • Cheng Peng (彭程)
    • 2
  • Yue Ma (马跃)
    • 3
  • Lu Han (韩璐)
    • 1
    • 4
  • Peng Wu (吴鹏)
    • 3
  • Honggen Peng (彭洪根)
    • 2
    Email author
  • Shunai Che (车顺爱)
    • 1
    • 4
    Email author
  1. 1.School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matri CompositesShanghai Jiao Tong UniversityShanghaiChina
  2. 2.Institute of Applied Chemistry, College of ChemistryNanchang UniversityNanchangChina
  3. 3.Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular EngineeringEast China Normal UniversityShanghaiChina
  4. 4.School of Chemical Science and EngineeringTongji UniversityShanghaiChina

Personalised recommendations