Advertisement

Science China Materials

, Volume 61, Issue 9, pp 1191–1200 | Cite as

Towards efficient and stable multi-color carbon nanoparticle phosphors: synergy between inner polar groups and outer silica matrix

  • Kai-Kai Liu (刘凯凯)
  • Rui Zhou (周蕊)
  • Ya-Chuan Liang (梁亚川)
  • Chen-Zi Guo (郭宸孜)
  • Zhi-Kun Xu (徐志堃)
  • Chong-Xin Shan (单崇新)
  • Lin Li (李林)
  • De-Zhen Shen (申德振)
Articles
  • 95 Downloads

Abstract

Nanocarbon as an eco-friendly and abundant material has strong multi-color fluorescence, which makes it a promising candidate for healthy lighting and display. However, the low fluorescence efficiency and poor stability of multi-color carbon nanoparticle (CNP) phosphors are main hurdles that hinder their applications. This work demonstrated efficient and stable multi-color CNP phosphors through synergy between inner polar groups and outer silica matrix. The polar groups in polyethylene glycol (PEG) 6,000 are favor of high fluorescence of the CNP phosphors, and the low melting point (64°C) of PEG 6,000 helps to improve the thermal stability of the phosphors, while the silica matrix provides protection to the phosphors. Based on this design, blue, green, yellow and red CNP phosphors with photoluminescence quantum yield of 53.1%, 47.4%, 43.8% and 42.3% have been achieved, all of which are the best values in ever reported multi-color CNP phosphors. Furthermore, the fluorescence of the CNP phosphors keeps almost unchanged at 100°C and degrades little in one month, indicating their good thermal tolerance and temporal stability. In addition, multicolor devices including white light-emitting devices (LEDs) have been realized by coating the CNP phosphors onto UV chips. The luminous efficiency, correlated color temperature, Commission Internationale de L’Eclairage and color rendering index of the white LED can reach 12 lm W−1, 6,107 K, (0.32, 0.33) and 89, respectively, indicating the potential applications of the CNP phosphors in lighting and display.

Keywords

carbon nanoparticle phosphor multi-color light-emitting devices 

高效稳定的多色碳纳米颗粒荧光粉: 内层极性官能团与外层二氧化硅的协同作用

摘要

纳米碳作为一种资源丰富的环境友好型材料, 会产生明亮的多色荧光, 成为一种在健康照明与显示领域有前景的材料. 然而多色碳 纳米粒子荧光粉的荧光效率和稳定性仍然低于预期, 这极大地限制了碳纳米粒子的应用. 本工作通过内层极性官能团与外层二氧化硅的 协同作用, 制备了高效稳定的多色碳纳米颗粒荧光粉. 聚乙二醇6000中的官能团有利于碳纳米粒子的发光, 其较低的熔点(64°C)提升了碳 纳米粒子的热稳定性, 而外层的二氧化硅对荧光粉提供了保护作用. 基于这个设计, 制备出了量子效率为53.1%, 47.4%, 43.8%以及42.3%的 蓝光、绿光、黄光和红光碳纳米粒子荧光粉, 量子效率均为已报道的多色碳纳米粒子荧光粉的最高值. 所制备的碳纳米粒子荧光粉展现 了良好的热稳定性和时间稳定性, 其荧光在100°C和一个月后仍能保持不变. 将所制备的碳纳米粒子荧光粉涂覆到紫外芯片上, 实现了包 括白光在内的多色发光器件. 其中, 白光器件的流明效率为12 lm W−1, 色温, 色坐标和显色指数分别为6107 K, (0.32,0.33)和89, 表明碳纳米 粒子荧光粉在照明与显示领域有潜在的应用前景.

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21601159, 61604132, 61505033, 11374296, 61404039), the National Science Fund for Distinguished Young Scholars (61425021).

Supplementary material

40843_2018_9248_MOESM0_ESM.pdf (2.9 mb)
Towards Efficient and Stable Multi-Color Carbon Nanoparticle Phosphors: Synergy between Inner Polar Groups and Outer Silica Matrix

References

  1. 1.
    Zhu S, Meng Q, Wang L, et al. Highly photoluminescent carbon dots for multicolor patterning, sensors, and bioimaging. Angew Chem Int Ed, 2013, 52: 3953–3957CrossRefGoogle Scholar
  2. 2.
    Jiang K, Sun S, Zhang L, et al. Red, green, and blue luminescence by carbon dots: full-color emission tuning and multicolor cellular imaging. Angew Chem Int Ed, 2015, 54: 5360–5363CrossRefGoogle Scholar
  3. 3.
    Wang W, Li Y, Cheng L, et al. Water-soluble and phosphoruscontaining carbon dots with strong green fluorescence for cell labeling. J Mater Chem B, 2014, 2: 46–48CrossRefGoogle Scholar
  4. 4.
    Ding H, Wei JS, Xiong HM. Nitrogen and sulfur co-doped carbon dots with strong blue luminescence. Nanoscale, 2014, 6: 13817–13823CrossRefGoogle Scholar
  5. 5.
    Ding H, Yu SB, Wei JS, et al. Full-color light-emitting carbon dots with a surface-state-controlled luminescence mechanism. ACS Nano, 2016, 10: 484–491CrossRefGoogle Scholar
  6. 6.
    Qu D, Zheng M, Zhang L, et al. Formation mechanism and optimization of highly luminescent N-doped graphene quantum dots. Sci Rep, 2014, 4: 5294CrossRefGoogle Scholar
  7. 7.
    Zheng M, Xie Z, Qu D, et al. On–off–on fluorescent carbon dot nanosensor for recognition of chromium(VI) and ascorbic acid based on the inner filter effect. ACS Appl Mater Interfaces, 2013, 5: 13242–13247CrossRefGoogle Scholar
  8. 8.
    Fang Y, Guo S, Li D, et al. Easy synthesis and imaging applications of cross-linked green fluorescent hollow carbon nanoparticles. ACS Nano, 2012, 6: 400–409CrossRefGoogle Scholar
  9. 9.
    Li D, Han D, Qu SN, et al. Supra-(carbon nanodots) with a strong visible to near-infrared absorption band and efficient photothermal conversion. Light Sci Appl, 2016, 5: e16120–e16120CrossRefGoogle Scholar
  10. 10.
    Peng H, Travas-Sejdic J. Simple aqueous solution route to luminescent carbogenic dots from carbohydrates. Chem Mater, 2009, 21: 5563–5565CrossRefGoogle Scholar
  11. 11.
    Krysmann MJ, Kelarakis A, Dallas P, et al. Formation mechanism of carbogenic nanoparticles with dual photoluminescence emission. J Am Chem Soc, 2012, 134: 747–750CrossRefGoogle Scholar
  12. 12.
    Pan L, Sun S, Zhang A, et al. Truly fluorescent excitation-dependent carbon dots and their applications in multicolor cellular imaging and multidimensional sensing. Adv Mater, 2015, 27: 7782–7787CrossRefGoogle Scholar
  13. 13.
    Zhang Q, Sun X, Ruan H, et al. Production of yellow-emitting carbon quantum dots from fullerene carbon soot. Sci China Mater, 2017, 60: 141–150CrossRefGoogle Scholar
  14. 14.
    Liu KK, Shan CX, Liu HZ, et al. Fluorescence of ZnO/carbon mixture and application in acid rain detection. RSC Adv, 2017, 7: 1841–1846CrossRefGoogle Scholar
  15. 15.
    Zheng XT, Ananthanarayanan A, Luo KQ, et al. Glowing graphene quantum dots and carbon dots: properties, syntheses, and biological applications. Small, 2015, 11: 1620–1636CrossRefGoogle Scholar
  16. 16.
    Yang ST, Wang X, Wang H, et al. Carbon dots as nontoxic and high-performance fluorescence imaging agents. J Phys Chem C, 2009, 113: 18110–18114CrossRefGoogle Scholar
  17. 17.
    Xu X, Zhang K, Zhao L, et al. Aspirin-based carbon dots, a good biocompatibility of material applied for bioimaging and anti-inflammation. ACS Appl Mater Interfaces, 2016, 8: 32706–32716CrossRefGoogle Scholar
  18. 18.
    Bourlinos AB, Zbořil R, Petr J, et al. Luminescent surface quaternized carbon dots. Chem Mater, 2012, 24: 6–8CrossRefGoogle Scholar
  19. 19.
    Yang ST, Cao L, Luo PG, et al. Carbon dots for optical imaging in vivo. J Am Chem Soc, 2009, 131: 11308–11309CrossRefGoogle Scholar
  20. 20.
    Qu D, Zheng M, Li J, et al. Tailoring color emissions from Ndoped graphene quantum dots for bioimaging applications. Light Sci Appl, 2015, 4: e364–e364CrossRefGoogle Scholar
  21. 21.
    Lu S, Sui L, Liu J, et al. Near-infrared photoluminescent polymercarbon nanodots with two-photon fluorescence. Adv Mater, 2017, 29: 1603443CrossRefGoogle Scholar
  22. 22.
    Ding C, Zhu A, Tian Y. Functional surface engineering of C-dots for fluorescent biosensing and in vivo bioimaging. Acc Chem Res, 2014, 47: 20–30CrossRefGoogle Scholar
  23. 23.
    Wang Y, Jiang X. Synthesis of cell-penetrated nitrogen-doped carbon dots by hydrothermal treatment of eggplant sepals. Sci China Chem, 2016, 59: 836–842CrossRefGoogle Scholar
  24. 24.
    Zhang X, Chen Y, Ding SN. Facile and large-scale synthesis of green-emitting carbon nanodots from aspartame and the applications for ferric ions sensing and cell imaging. Sci Bull, 2017, 62: 1256–1266CrossRefGoogle Scholar
  25. 25.
    Guo X, Wang CF, Yu ZY, et al. Facile access to versatile fluorescent carbon dots toward light-emitting diodes. Chem Commun, 2012, 48: 2692–2694CrossRefGoogle Scholar
  26. 26.
    Chen Y, Zheng M, Xiao Y, et al. A self-quenching-resistant carbondot powder with tunable solid-state fluorescence and construction of dual-fluorescence morphologies for white light-emission. Adv Mater, 2016, 28: 312–318CrossRefGoogle Scholar
  27. 27.
    Li X, Rui M, Song J, et al. Carbon and graphene quantum dots for optoelectronic and energy devices: a review. Adv Funct Mater, 2015, 25: 4929–4947CrossRefGoogle Scholar
  28. 28.
    Shen J, Zhu Y, Yang X, et al. Graphene quantum dots: emergent nanolights for bioimaging, sensors, catalysis and photovoltaic devices. Chem Commun, 2012, 48: 3686–3699CrossRefGoogle Scholar
  29. 29.
    Yu H, Shi R, Zhao Y, et al. Smart utilization of carbon dots in semiconductor photocatalysis. Adv Mater, 2016, 28: 9454–9477CrossRefGoogle Scholar
  30. 30.
    Wang J, Peng F, Lu Y, et al. Large-scale green synthesis of fluorescent carbon nanodots and their use in optics applications. Adv Opt Mater, 2015, 3: 103–111CrossRefGoogle Scholar
  31. 31.
    Gao S, Chen Y, Fan H, et al. A green one-arrow-two-hawks strategy for nitrogen-doped carbon dots as fluorescent ink and oxygen reduction electrocatalysts. J Mater Chem A, 2014, 2: 6320CrossRefGoogle Scholar
  32. 32.
    Liu SS, Wang CF, Li CX, et al. Hair-derived carbon dots toward versatile multidimensional fluorescent materials. J Mater Chem C, 2014, 2: 6477–6483CrossRefGoogle Scholar
  33. 33.
    Liu Y, Zhou L, Li Y, et al. Highly fluorescent nitrogen-doped carbon dots with excellent thermal and photo stability applied as invisible ink for loading important information and anti-counterfeiting. Nanoscale, 2017, 9: 491–496CrossRefGoogle Scholar
  34. 34.
    Li X, Liu Y, Song X, et al. Intercrossed carbon nanorings with pure surface states as low-cost and environment-friendly phosphors for white-light-emitting diodes. Angew Chem Int Ed, 2015, 54: 1759–1764CrossRefGoogle Scholar
  35. 35.
    Zhou D, Zhai Y, Qu S, et al. Electrostatic assembly guided synthesis of highly luminescent carbon-nanodots@BaSO4 hybrid phosphors with improved stability. Small, 2016, 13: 1602055CrossRefGoogle Scholar
  36. 36.
    Tian Z, Zhang X, Li D, et al. Full-color inorganic carbon dot phosphors for white-light-emitting diodes. Adv Opt Mater, 2017, 5: 1700416CrossRefGoogle Scholar
  37. 37.
    Feng T, Zeng Q, Lu S, et al. Color-tunable carbon dots possessing solid-state emission for full-color light-emitting diodes applications. ACS Photonics, 2018, 5: 502–510CrossRefGoogle Scholar
  38. 38.
    Shao J, Zhu S, Liu H, et al. Full-color emission polymer carbon dots with quench-resistant solid-state fluorescence. Adv Sci, 2017, 4: 1700395CrossRefGoogle Scholar
  39. 39.
    Deng Y, Chen X, Wang F, et al. Environment-dependent photon emission from solid state carbon dots and its mechanism. Nanoscale, 2014, 6: 10388–10393CrossRefGoogle Scholar
  40. 40.
    Qu S, Wang X, Lu Q, et al. A biocompatible fluorescent ink based on water-soluble luminescent carbon nanodots. Angew Chem Int Ed, 2012, 51: 12215–12218CrossRefGoogle Scholar
  41. 41.
    Lu S, Xiao G, Sui L, et al. Piezochromic carbon dots with twophoton fluorescence. Angew Chem, 2017, 129: 6283–6287CrossRefGoogle Scholar
  42. 42.
    Xie Z, Wang F, Liu C. Organic-inorganic hybrid functional carbon dot gel glasses. Adv Mater, 2012, 24: 1716–1721CrossRefGoogle Scholar
  43. 43.
    Liu C, Bao L, Tang B, et al. Fluorescence-converging carbon nanodots- hybridized silica nanosphere. Small, 2016, 12: 4702–4706CrossRefGoogle Scholar
  44. 44.
    Wang F, Xie Z, Zhang H, et al. Highly luminescent organosilanefunctionalized carbon dots. Adv Funct Mater, 2011, 21: 1027–1031CrossRefGoogle Scholar
  45. 45.
    Zhou D, Li D, Jing P, et al. Conquering aggregation-induced solidstate luminescence quenching of carbon dots through a carbon dots-triggered silica gelation process. Chem Mater, 2017, 29: 1779–1787CrossRefGoogle Scholar
  46. 46.
    Valeur B, Berberan-Santos MN. Environmental effects on fluorescence emission (2nd edition). In: Molecular Fluorescence: Principles and Applications. Berlin: Wiley, 2012, 109–140Google Scholar
  47. 47.
    Yadav LDS. Organic Spectroscopy. Heidelberg: Springer, 2005CrossRefGoogle Scholar
  48. 48.
    Sun M, Qu S, Hao Z, et al. Towards efficient solid-state photoluminescence based on carbon-nanodots and starch composites. Nanoscale, 2014, 6: 13076–13081CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Kai-Kai Liu (刘凯凯)
    • 1
    • 2
  • Rui Zhou (周蕊)
    • 3
  • Ya-Chuan Liang (梁亚川)
    • 3
  • Chen-Zi Guo (郭宸孜)
    • 1
  • Zhi-Kun Xu (徐志堃)
    • 4
  • Chong-Xin Shan (单崇新)
    • 1
    • 3
  • Lin Li (李林)
    • 4
  • De-Zhen Shen (申德振)
    • 1
  1. 1.State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and PhysicsChinese Academy of SciencesChangchunChina
  2. 2.University of the Chinese Academy of SciencesBeijingChina
  3. 3.School of Physics and EngineeringZhengzhou UniversityZhengzhouChina
  4. 4.Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic EngineeringHarbin Normal UniversityHarbinChina

Personalised recommendations