Science China Materials

, Volume 61, Issue 9, pp 1225–1236 | Cite as

Physio- and chemo-dual crosslinking toward thermoand photo-response of azobenzene-containing liquid crystalline polyester

  • Hai-Yi Zhong (钟海艺)
  • Li Chen (陈力)Email author
  • Xiao-Min Ding (丁晓敏)
  • Rong Yang (杨荣)
  • Yu-Zhong Wang (王玉忠)Email author


Combining the stability of chemical crosslinking and the processability of physical crosslinking is a well-established strategy to design new materials with desirable stimuli–responsive properties. Herein, a series of azobenzenebased thermotropic liquid crystalline polyesters were synthesized by introducing mesogenic dial named 4,4ʹ-bis(6-hydroxyhexyloxy) azobenzene (BHHAB), 2-phenylsuccinic acid (PSA), and different contents of 1,2,3-propanetricarboxylic acid (PTA) as the chemical crosslinker. All these polyesters showed good thermal stability and smectic liquid crystalline phase. Wide-angel X-ray diffraction (WAXD) and the fluorescence emission spectra confirmed the existence of π–π stacking interactions as the physical crosslinking in the polymer chains, particularly at the lower content of PTA. However, when the PTA content increased, the chemical crosslinking changed the chain conformation, and thus the intensity of physical crosslinking slackened gradually. Combining the physical and chemical crosslinking, these polyesters showed the thermoplastic processability, thermal shape memory, heat-assisted healing and photo responsive behaviors. Taking advantages of these features, these multiple stimuli–responsive polymers can bring more chances for smart materials such as soft actuator.


liquid crystalline polymer crosslinking shape memory photo response self healing 



结合化学交联提供的稳定性和物理交联提供的可热塑加工性可设计得到具有多种刺激响应行为的新材料. 本文以偶氮苯二氧己醇 (BHHAB) 为液晶基元, 与苯基丁二酸(PSA) 和丙三羧酸(PTA) 本体聚合得到一系列液晶聚合物PBHPS-x%PTA, 其中PTA作为化学交 联, 而取代苯基与介晶基元之间的π–π相互作用可提供物理交联. 热分析结果显示这些聚合物具有高的热稳定性并表现出近晶型液晶行 为. 广角X射线衍射(WAXD) 和荧光光谱证实了分子间具有可作为物理交联点的π–π相互作用; 并且随着PTA含量的增加, 化学交联会逐 渐影响分子链构象, 最终破坏物理交联作用. 轻度的化学交联保留了液晶聚合物的可热塑加工性, 而在物理交联与化学交联的共同作用下, 液晶聚合物具有可逆光致形变, 热致形状记忆及自修复性能, 在智能高分子材料领域表现出一定的应用前景.



This work was supported by the National Natural Science Foundation of China (51721091) and the Sichuan Province Youth Science and Technology Innovation Team (2017TD0006). The authors would also like to thank the Analysis and Testing Center of Sichuan University for the NMR measurement.

Supplementary material

40843_2018_9247_MOESM0_ESM.pdf (1.1 mb)
Physio- and chemo-dual crosslinking toward thermoand photo-response of azobenzene-containing liquid crystalline polyester


  1. 1.
    Warner M, Terentjev E. Liquid Crystal Elastomers. Oxford: Oxford University Press, 2003Google Scholar
  2. 2.
    de Jeu WH. Liquid Crystal Elastomers: Materials and Applications. Heidelberg: Springer, 2012, pp. V–VICrossRefGoogle Scholar
  3. 3.
    Huang WM, Zhao Y, Wang CC, et al. Thermo/chemo-responsive shape memory effect in polymers: a sketch of working mechanisms, fundamentals and optimization. J Polym Res, 2012, 19: 9952CrossRefGoogle Scholar
  4. 4.
    Ohm C, Brehmer M, Zentel R. Liquid crystalline elastomers as actuators and sensors. Adv Mater, 2010, 22: 3366–3387CrossRefGoogle Scholar
  5. 5.
    Degennes PG. One type of nematic polymers. C R Hebd Sean Acad Sci Ser B, 1975, 281: 101–103Google Scholar
  6. 6.
    Burke KA, Rousseau IA, Mather PT. Reversible actuation in mainchain liquid crystalline elastomers with varying crosslink densities. Polymer, 2014, 55: 5897–5907CrossRefGoogle Scholar
  7. 7.
    García-Márquez AR, Heinrich B, Beyer N, et al. Mesomorphism and shape-memory behavior of main-chain liquid-crystalline coelastomers: modulation by the chemical composition. Macromolecules, 2014, 47: 5198–5210CrossRefGoogle Scholar
  8. 8.
    Ahn S, Deshmukh P, Gopinadhan M, et al. Side-chain liquid crystalline polymer networks: exploiting nanoscale smectic polymorphism to design shape-memory polymers. ACS Nano, 2011, 5: 3085–3095CrossRefGoogle Scholar
  9. 9.
    Ahn S, Kasi RM. Exploiting microphase-separated morphologies of side-chain liquid crystalline polymer networks for triple shape memory properties. Adv Funct Mater, 2011, 21: 4543–4549CrossRefGoogle Scholar
  10. 10.
    Burke KA, Mather PT. Crosslinkable liquid crystalline copolymers with variable isotropization temperature. J Mater Chem, 2012, 22: 14518–14530CrossRefGoogle Scholar
  11. 11.
    Wen Z, Zhang T, Hui Y, et al. Elaborate fabrication of well-defined side-chain liquid crystalline polyurethane networks with tripleshape memory capacity. J Mater Chem A, 2015, 3: 13435–13444CrossRefGoogle Scholar
  12. 12.
    Finkelmann H, Nishikawa E, Pereira GG, et al. A new opto-mechanical effect in solids. Phys Rev Lett, 2001, 87: 015501CrossRefGoogle Scholar
  13. 13.
    Yu Y, Nakano M, Ikeda T. Directed bending of a polymer film by light. Nature, 2003, 425: 145–145CrossRefGoogle Scholar
  14. 14.
    van Oosten CL, Bastiaansen CWM, Broer DJ. Printed artificial cilia from liquid-crystal network actuators modularly driven by light. Nat Mater, 2009, 8: 677–682CrossRefGoogle Scholar
  15. 15.
    Cheng F, Yin R, Zhang Y, et al. Fully plastic microrobots which manipulate objects using only visible light. Soft Matter, 2010, 6: 3447–3449CrossRefGoogle Scholar
  16. 16.
    Lee KM, Smith ML, Koerner H, et al. Photodriven, flexural-torsional oscillation of glassy azobenzene liquid crystal polymer networks. Adv Funct Mater, 2011, 21: 2913–2918CrossRefGoogle Scholar
  17. 17.
    Ware TH, McConney ME, Wie JJ, et al. Voxelated liquid crystal elastomers. Science, 2015, 347: 982–984CrossRefGoogle Scholar
  18. 18.
    Sun L, Huang WM, Ding Z, et al. Stimulus-responsive shape memory materials: A review. Mater Des, 2012, 33: 577–640CrossRefGoogle Scholar
  19. 19.
    Liu C, Qin H, Mather PT. Review of progress in shape-memory polymers. J Mater Chem, 2007, 17: 1543–1558CrossRefGoogle Scholar
  20. 20.
    Zhao Q, Qi HJ, Xie T. Recent progress in shape memory polymer: New behavior, enabling materials, and mechanistic understanding. Prog Polymer Sci, 2015, 49-50: 79–120CrossRefGoogle Scholar
  21. 21.
    Salvekar AV, Zhou Y, Huang WM, et al. Shape/temperature memory phenomena in un-crosslinked poly—caprolactone (PCL). Eur Polymer J, 2015, 72: 282–295CrossRefGoogle Scholar
  22. 22.
    Küpfer J, Finkelmann H. Macromol Chem Rapid Commun, 1991, 12: 717–726CrossRefGoogle Scholar
  23. 23.
    Broer DJ, Boven J, Mol GN, et al. In stiu photopolymerization of oriented liquid-crystalline acrylates 3. Oriented polymer networks from a mesogenic diacrylate. Macromol Chem Phys, 1989, 190: 2255–2268Google Scholar
  24. 24.
    Pei Z, Yang Y, Chen Q, et al. Mouldable liquid-crystalline elastomer actuators with exchangeable covalent bonds. Nat Mater, 2014, 13: 36–41CrossRefGoogle Scholar
  25. 25.
    Li Y, Rios O, Keum JK, et al. Photoresponsive liquid crystalline epoxy networks with shape memory behavior and dynamic ester bonds. ACS Appl Mater Interfaces, 2016, 8: 15750–15757CrossRefGoogle Scholar
  26. 26.
    Michal BT, McKenzie BM, Felder SE, et al. Metallo-, thermo-, and photoresponsive shape memory and actuating liquid crystalline elastomers. Macromolecules, 2015, 48: 3239–3246CrossRefGoogle Scholar
  27. 27.
    Qin C, Feng Y, Luo W, et al. A supramolecular assembly of crosslinked azobenzene/polymers for a high-performance light-driven actuator. J Mater Chem A, 2015, 3: 16453–16460CrossRefGoogle Scholar
  28. 28.
    Lv JA, Liu Y, Wei J, et al. Photocontrol of fluid slugs in liquid crystal polymer microactuators. Nature, 2016, 537: 179–184CrossRefGoogle Scholar
  29. 29.
    Lv J, Wang W, Wu W, et al. A reactive azobenzene liquid-crystalline block copolymer as a promising material for practical application of light-driven soft actuators. J Mater Chem C, 2015, 3: 6621–6626CrossRefGoogle Scholar
  30. 30.
    Mamiya J, Yoshitake A, Kondo M, et al. Is chemical crosslinking necessary for the photoinduced bending of polymer films? J Mater Chem, 2008, 18: 63–65CrossRefGoogle Scholar
  31. 31.
    Fang L, Zhang H, Li Z, et al. Synthesis of reactive azobenzene main-chain liquid crystalline polymers via michael addition polymerization and photomechanical effects of their supramolecular hydrogen-bonded fibers. Macromolecules, 2013, 46: 7650–7660CrossRefGoogle Scholar
  32. 32.
    Zhao R, Zhao T, Jiang X, et al. Thermoplastic high strain multi-shape memory polymer: side-chain polynorbornene with columnar liquid crystalline phase. Adv Mater, 2017, 29: 1605908CrossRefGoogle Scholar
  33. 33.
    Yang R, Chen L, Ruan C, et al. Chain folding in main-chain liquid crystalline polyesters: from p–p stacking toward shape memory. J Mater Chem C, 2014, 2: 6155–6164CrossRefGoogle Scholar
  34. 34.
    Meng ZY, Chen L, Zhong HY, et al. The effect of carbon nanotube plus graphene on the shape memory behavior and tensile properties of a liquid crystalline polyester. Acta Polym Sin, 2016, 12: 1758–1762Google Scholar
  35. 35.
    Meng ZY, Chen L, Zhong HY, et al. Effect of different dimensional carbon nanoparticles on the shape memory behavior of thermotropic liquid crystalline polymer. Composites Sci Tech, 2017, 138: 8–14CrossRefGoogle Scholar
  36. 36.
    Zhong HY, Chen L, Yang R, et al. Azobenzene-containing liquid crystalline polyester with p–p interactions: diverse thermo-and photo-responsive behaviours. J Mater Chem C, 2017, 5: 3306–3314CrossRefGoogle Scholar
  37. 37.
    Zhong HY, Chen L, Liu XF, et al. Novel liquid crystalline copolyester containing amphi-mesogenic units toward multiple stimuliresponse behaviors. J Mater Chem C, 2017, 5: 9702–9711CrossRefGoogle Scholar
  38. 38.
    Yang R, Ding L, Chen W, et al. Chain folding in main-chain liquid crystalline polyester with strong p–p interaction: An efficient ß-nucleating agent for isotactic polypropylene. Macromolecules, 2017, 50: 1610–1617CrossRefGoogle Scholar
  39. 39.
    Montarnal D, Tournilhac F, Hidalgo M, et al. Epoxy-based networks combining chemical and supramolecular hydrogen-bonding crosslinks. J Polym Sci A Polym Chem, 2010, 48: 1133–1141CrossRefGoogle Scholar
  40. 40.
    Pan Y, Liu T, Li J, et al. High modulus ratio shape-memory polymers achieved by combining hydrogen bonding with controlled crosslinking. J Polym Sci B Polym Phys, 2011, 49: 1241–1245CrossRefGoogle Scholar
  41. 41.
    Chakraborty S, Rajput L, Desiraju GR. Designing ternary cocrystals with stacking interactions and weak hydrogen bonds. 4,4’-bis-hydroxyazobenzene. Cryst Growth Des, 2014, 14: 2571–2577CrossRefGoogle Scholar
  42. 42.
    Wool RP, O'Connor KM. A theory crack healing in polymers. J Appl Phys, 1981, 52: 5953–5963CrossRefGoogle Scholar
  43. 43.
    Ahn J, Park S, Lee JH, et al. Fluorescent hydrogels formed by CH–p and p–p interactions as the main driving forces: an approach toward understanding the relationship between fluorescence and structure. Chem Commun, 2013, 49: 2109–2111CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Hai-Yi Zhong (钟海艺)
    • 1
    • 2
  • Li Chen (陈力)
    • 1
    Email author
  • Xiao-Min Ding (丁晓敏)
    • 1
  • Rong Yang (杨荣)
    • 3
  • Yu-Zhong Wang (王玉忠)
    • 1
    Email author
  1. 1.Center for Degradable and Flame–Retardant Polymeric Materials, College of Chemistry, State Key Laboratory of Polymer Materials Engineering, National Engineering Laboratory of Eco–Friendly Polymeric Materials (Sichuan)Sichuan UniversityChengduChina
  2. 2.College of PharmacyGuangxi University of Chinese MedicineNanningChina
  3. 3.School of Materials Science and EngineeringChangzhou UniversityChangzhouChina

Personalised recommendations