Advertisement

Science China Materials

, Volume 61, Issue 9, pp 1177–1184 | Cite as

Cu2GeS3 derived ultrafine nanoparticles as high-performance anode for sodium ion battery

  • Lin Fu (付林)
  • Chaoqun Shang (商超群)
  • Jun Ma (马君)
  • Chuanjian Zhang (张传健)
  • Xiao Zang (臧晓)
  • Jingchao Chai (柴敬超)
  • Jiedong Li (李杰东)
  • Guanglei Cui (崔光磊)
Articles

Abstract

Germanium based sulfides are potentially attractive as anode material for sodium ion batteries but rarely investigated. Herein, we firstly investigated Na+ storage properties of pristine Cu2GeS3 (PCGS) and found an effective strategy to improve its performance by a single lithiation/delithiation cycle obtaining ultrafine nanoparticle copper germanium sulfide (NCGS). The lithiation/delithiation process leads to the formation of a stable Li-containing solid electrolyte interphase film and a significant improvement of sodiation kinetics. Therefore, the NCGS anode delivers favorable capacity retention and better rate capability compared with that of a PCGS whether in the half cell or in the full cell, showing great promise for energy storage application.

Keywords

sodium ion battery nanoparticle copper germanium sulfide anode material full cell 

Cu2GeS3衍生超细纳米微粒作为高性能钠离子电池负极材料

摘要

锗基硫化物作为钠离子电池负极具有潜在的吸引力, 但相关报道甚少. 为此, 我们研究了Cu2GeS3 (PCGS)的储钠性能, 发现通过单次 嵌锂/脱锂循环获得超细纳米微粒铜锗硫(NCGS)是一种改善其储钠性能的有效策略. 嵌锂/脱锂过程能够在材料表面形成一层稳定的含锂 固态电解质相界面膜, 并提高材料的嵌钠动力学. 因此, 与PCGS相比, NCGS在半电池和全电池中都显示出良好的循环性能和倍率性能, 在 能源存储领域具有广阔的应用前景.

Notes

Acknowledgments

Fu L, Shang C and Cui G conceived the experiment and carried out data analysis. Ma J, Zhang C, Zang X, Chai J and Li J assisted in experimental work. All authors contributed to the general discussion.

Supplementary material

40843_2018_9236_MOESM0_ESM.pdf (3.6 mb)
Cu2GeS3 derived ultrafine nanoparticles as high-performance anode for sodium ion battery

References

  1. 1.
    Luo W, Shen F, Bommier C, et al. Na-ion battery anodes: materials and electrochemistry. Acc Chem Res, 2016, 49: 231–240CrossRefGoogle Scholar
  2. 2.
    An X, Yang H, Wang Y, et al. Hydrothermal synthesis of coherent porous V2O3/carbon nanocomposites for high-performance lithium- and sodium-ion batteries. Sci China Mater, 2017, 60: 717–727CrossRefGoogle Scholar
  3. 3.
    Zhang K, Hu Z, Tao Z, et al. Inorganic & organic materials for rechargeable Li batteries with multi-electron reaction. Sci China Mater, 2014, 57: 42–58CrossRefGoogle Scholar
  4. 4.
    Yabuuchi N, Kubota K, Dahbi M, et al. Research development on sodium-ion batteries. Chem Rev, 2014, 114: 11636–11682CrossRefGoogle Scholar
  5. 5.
    Massé RC, Uchaker E, Cao G. Beyond Li-ion: electrode materials for sodium- and magnesium-ion batteries. Sci China Mater, 2015, 58: 715–766CrossRefGoogle Scholar
  6. 6.
    Xiang X, Zhang K, Chen J. Recent advances and prospects of cathode materials for sodium-ion batteries. Adv Mater, 2015, 27: 5343–5364CrossRefGoogle Scholar
  7. 7.
    Dunn B, Kamath H, Tarascon JM. Electrical energy storage for the grid: a battery of choices. Science, 2011, 334: 928–935CrossRefGoogle Scholar
  8. 8.
    Palomares V, Serras P, Villaluenga I, et al. Na-ion batteries, recent advances and present challenges to become low cost energy storage systems. Energy Environ Sci, 2012, 5: 5884–5901CrossRefGoogle Scholar
  9. 9.
    Lao M, Zhang Y, Luo W, et al. Alloy-based anode materials toward advanced sodium-ion batteries. Adv Mater, 2017, 29: 1700622CrossRefGoogle Scholar
  10. 10.
    Dong S, Li C, Ge X, et al. ZnS-Sb2S3@C core-double shell polyhedron structure derived from metal–organic framework as anodes for high performance sodium ion batteries. ACS Nano, 2017, 11: 6474–6482CrossRefGoogle Scholar
  11. 11.
    Chevrier VL, Ceder G. Challenges for Na-ion negative electrodes. J Electrochem Soc, 2011, 158: A1011CrossRefGoogle Scholar
  12. 12.
    Abel PR, Lin YM, de Souza T, et al. Nanocolumnar germanium thin films as a high-rate sodium-ion battery anode material. J Phys Chem C, 2013, 117: 18885–18890CrossRefGoogle Scholar
  13. 13.
    Kohandehghan A, Cui K, Kupsta M, et al. Activation with Li enables facile sodium storage in germanium. Nano Lett, 2014, 14: 5873–5882CrossRefGoogle Scholar
  14. 14.
    Qin W, Chen T, Hu B, et al. GeO2 decorated reduced graphene oxide as anode material of sodium ion battery. Electrochim Acta, 2015, 173: 193–199CrossRefGoogle Scholar
  15. 15.
    Lim YR, Jung CS, Im HS, et al. Zn2GeO4 and Zn2SnO4 nanowires for high-capacity lithium- and sodium-ion batteries. J Mater Chem A, 2016, 4: 10691–10699CrossRefGoogle Scholar
  16. 16.
    Zhu C, Kopold P, Li W, et al. A general strategy to fabricate carbon-coated 3D porous interconnected metal sulfides: case study of SnS/C nanocomposite for high-performance lithium and sodium ion batteries. Adv Sci, 2015, 2: 1500200CrossRefGoogle Scholar
  17. 17.
    Marino C, Block T, Pöttgen R, et al. CuSbS2 as a negative electrode material for sodium ion batteries. J Power Sources, 2017, 342: 616–622CrossRefGoogle Scholar
  18. 18.
    Kim Y, Hwang H, Lawler K, et al. Electrochemical behavior of Ge and GeX2 (X = O, S) glasses: improved reversibility of the reaction of Li with Ge in a sulfide medium. Electrochim Acta, 2008, 53: 5058–5064CrossRefGoogle Scholar
  19. 19.
    Yang C, Zhou B, Miao S, et al. Cu2Ge(S3–xSex) colloidal nanocrystals: synthesis, characterization, and composition-dependent band gap engineering. J Am Chem Soc, 2013, 135: 5958–5961CrossRefGoogle Scholar
  20. 20.
    Shaposhnikov VL, Krivosheeva AV, Borisenko VE., et al. Electronic and optical properties of Cu2XS3 (X=Si, Ge, Sn) prospects for photovoltaics. ScienceJet, 2012, 1: 1-5Google Scholar
  21. 21.
    Trommer J, Heinzig A, Mühle U, et al. Enabling energy efficiency and polarity control in germanium nanowire transistors by individually gated nanojunctions. ACS Nano, 2017, 11: 1704–1711CrossRefGoogle Scholar
  22. 22.
    Fu L, Zhang C, Chen B, et al. Graphene boosted Cu2GeS3 for advanced lithium-ion batteries. Inorg Chem Front, 2017, 4: 541–546CrossRefGoogle Scholar
  23. 23.
    Liu XH, Huang S, Picraux ST, et al. Reversible nanopore formation in Ge nanowires during lithiation–delithiation cycling: an in situ transmission electron microscopy study. Nano Lett, 2011, 11: 3991–3997CrossRefGoogle Scholar
  24. 24.
    Jiang Q, Chen X, Gao H, et al. Synthesis of Cu2ZnSnS4 as novel anode material for lithium-ion battery. Electrochim Acta, 2016, 190: 703–712CrossRefGoogle Scholar
  25. 25.
    Xue DJ, Jiao F, Yan HJ, et al. Synthesis of wurtzite Cu2ZnGeSe4 nanocrystals and their thermoelectric properties. Chem Asian J, 2013, 8: 2383–2387CrossRefGoogle Scholar
  26. 26.
    Choi SH, Jung KY, Kang YC. Amorphous GeOx-coated reduced graphene oxide balls with sandwich structure for long-life lithiumion batteries. ACS Appl Mater Interfaces, 2015, 7: 13952–13959CrossRefGoogle Scholar
  27. 27.
    Zhou L, Zhang K, Sheng J, et al. Structural and chemical synergistic effect of CoS nanoparticles and porous carbon nanorods for high-performance sodium storage. Nano Energy, 2017, 35: 281–289CrossRefGoogle Scholar
  28. 28.
    Sung SD, Lim I, Kang P, et al. Design and development of highly efficient PbS quantum dot-sensitized solar cells working in an aqueous polysulfide electrolyte. Chem Commun, 2013, 49: 6054–6056CrossRefGoogle Scholar
  29. 29.
    Zhang X, Liu Y, Zhang G, et al. Thermal decomposition of bismuth oxysulfide from photoelectric Bi2O2S to superconducting Bi4O4S3. ACS Appl Mater Interfaces, 2015, 7: 4442–4448CrossRefGoogle Scholar
  30. 30.
    Zheng J, Gu M, Chen H, et al. Ionic liquid-enhanced solid state electrolyte interface (SEI) for lithium–sulfur batteries. J Mater Chem A, 2013, 1: 8464–8470CrossRefGoogle Scholar
  31. 31.
    Nie M, Abraham DP, Chen Y, et al. Silicon solid electrolyte interphase (SEI) of lithium ion battery characterized by microscopy and spectroscopy. J Phys Chem C, 2013, 117: 13403–13412CrossRefGoogle Scholar
  32. 32.
    Li H, Wang Y, Jiang J, et al. CuS microspheres as high-performance anode material for Na-ion batteries. Electrochim Acta, 2017, 247: 851–859CrossRefGoogle Scholar
  33. 33.
    Li J, Yan D, Lu T, et al. Significantly improved sodium-ion storage performance of CuS nanosheets anchored into reduced graphene oxide with ether-based electrolyte. ACS Appl Mater Interfaces, 2017, 9: 2309–2316CrossRefGoogle Scholar
  34. 34.
    Kajita T, Itoh T. Electrochemical sodium storage in amorphous GeOx powder. Electrochim Acta, 2016, 195: 192–198CrossRefGoogle Scholar
  35. 35.
    Qian J, Wu X, Cao Y, et al. High capacity and rate capability of amorphous phosphorus for sodium ion batteries. Angew Chem Int Ed, 2013, 52: 4633–4636CrossRefGoogle Scholar
  36. 36.
    Lindgren F, Xu C, Niedzicki L, et al. SEI formation and interfacial stability of a Si electrode in a LiTDI-salt based electrolyte with FEC and V Cadditives for Li-ion batteries. ACS Appl Mater Interfaces, 2016, 8: 15758–15766CrossRefGoogle Scholar
  37. 37.
    Ji L, Gu M, Shao Y, et al. Controlling SEI formation on SnSbporous carbon nanofibers for improved Na ion storage. Adv Mater, 2014, 26: 2901–2908CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Lin Fu (付林)
    • 1
  • Chaoqun Shang (商超群)
    • 1
  • Jun Ma (马君)
    • 1
  • Chuanjian Zhang (张传健)
    • 1
  • Xiao Zang (臧晓)
    • 1
  • Jingchao Chai (柴敬超)
    • 1
  • Jiedong Li (李杰东)
    • 1
  • Guanglei Cui (崔光磊)
    • 1
  1. 1.Qingdao Industrial Energy Storage Research InstituteQingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of SciencesQingdaoChina

Personalised recommendations