Science China Materials

, Volume 61, Issue 9, pp 1201–1208 | Cite as

Humidity-responsive nanocomposite of gold nanoparticles and polyacrylamide brushes grafted on Ag film: synthesis and application as plasmonic nanosensor

  • Huaxiang Chen (陈华祥)
  • Tingting You (尤汀汀)
  • Geng Xu (徐更)
  • Yukun Gao (高宇坤)
  • Chenmeng Zhang (张晨萌)
  • Nan Yang (杨楠)
  • Penggang Yin (殷鹏刚)Email author


A general stepwise strategy for the preparation of new humidity-responsive plasmonic nanosensor was described for the first time, based on Ag film functionalization by polyacrylamide (PAAM) brushes via surface-initiated atom transfer radical polymerization (SI-ATRP) method and then assembled with gold nanoparticles (Au NPs). We designed by this way a new plasmonic device made of Au NPs embedded in a humid vapor responsive polymer layer on Ag film and extensively characterized by surface-enhanced Raman scattering (SERS). When the relative humidity (RH) is above 50%, the number of plasmonic hotspots decreases, causing SERS signal reduced noticeably, for the volume expansion of PAAM brushes varied the nano-gap between closely spaced Au NPs, and between Au NPs and Ag film. The reversible optical properties of the prepared nanocomposite tuned by RH were probed through SERS using 4-mercaptopyridine (4-Mpy) as a molecular probe, and the decrease of the RH reversibly induces a significant enhancement of the 4-Mpy SERS signal. By means of the high reversibility, the RH responsive nanocomposite developed in this paper provides a dynamic SERS platform and can be applied as plasmonic nanosensor which is proved to be stable for at least two months.


RH-response plasmonic nanosensor SERS 



本文报道了一种湿度响应纳米SERS传感器. 通过原子转移自由基聚合技术在银片表面嫁接了具有湿度响应性能的聚丙烯酰胺分子 刷, 并组装金纳米颗粒形成复合结构. 该分子刷湿度响应灵敏, 而且可有效抓取金纳米颗粒, 构成均匀分布的SERS“热点”. 通过调节湿度, 实现了SERS“热点”的可逆调控, 并通过拉曼光谱快速捕捉探针分子特征峰的SERS信号强度变化, 实现湿度响应的SERS传感功能. 湿度低 于50%时, 分子刷收缩, 金纳米颗粒间距降至纳米级, 形成大量热点, 使得SERS增强因子达到2×108; 湿度高于50%, 分子刷舒张, 金纳米颗粒 间距变大, 当湿度大于90%时, SERS“热点”最少, SERS信号最低. 可逆调控湿度变化, 得到可逆的SERS信号变化, 因此该复合材料实现了高 效灵敏的湿度响应SERS传感.



This work was supported by the National Natural Science Foundation of China (51572009).

Supplementary material

40843_2017_9232_MOESM0_ESM.pdf (720 kb)
Humidity-responsive nanocomposite of gold nanoparticles and polyacrylamide brushes grafted on Ag film: synthesis and application as plasmonic nanosensor


  1. 1.
    Ferrando R, Jellinek J, Johnston RL. Nanoalloys: from theory to applications of alloy clusters and nanoparticles. Chem Rev, 2008, 108: 845–910CrossRefGoogle Scholar
  2. 2.
    Yang Y, Jiang X, Chao J, et al. Synthesis of magnetic core-branched Au shell nanostructures and their application in cancer-related miRNA detection via SERS. Sci China Mater, 2017, 60: 1129–1144CrossRefGoogle Scholar
  3. 3.
    Gersten J, Nitzan A. Electromagnetic theory of enhanced Raman scattering by molecules adsorbed on rough surfaces. J Chem Phys, 1980, 73: 3023–3037CrossRefGoogle Scholar
  4. 4.
    Dieringer JA, Wustholz KL, Masiello DJ, et al. Surface-enhanced Raman excitation spectroscopy of a single rhodamine 6G molecule. J Am Chem Soc, 2009, 131: 849–854CrossRefGoogle Scholar
  5. 5.
    Duan C, Ren B, Liu H, et al. Flexible SERS active detection from novel Ag nano-necklaces as highly reproducible and ultrasensitive tips. Sci China Mater, 2016, 59: 435–443CrossRefGoogle Scholar
  6. 6.
    Lin J, Shang Y, Li X, et al. Ultrasensitive SERS detection by defect engineering on single Cu2O superstructure particle. Adv Mater, 2017, 29: 1604797CrossRefGoogle Scholar
  7. 7.
    Stiles PL, Dieringer JA, Shah NC, et al. Surface-enhanced Raman spectroscopy. Annu Rev Anal Chem, 2008, 1: 601–626CrossRefGoogle Scholar
  8. 8.
    Wang M, Meng G, Huang Q, et al. CNTs-anchored egg shell membrane decorated with Ag-NPs as cheap but effective SERS substrates. Sci China Mater, 2015, 58: 198–203CrossRefGoogle Scholar
  9. 9.
    Chen SY, Lazarides AA. Quantitative amplification of Cy5 SERS in ‘warm spots’ created by plasmonic coupling in nanoparticle assemblies of controlled structure. J Phys Chem C, 2009, 113: 12167–12175CrossRefGoogle Scholar
  10. 10.
    Guerrini L, McKenzie F, Wark AW, et al. Tuning the interparticle distance in nanoparticle assemblies in suspension via DNA-triplex formation: correlation between plasmonic and surface-enhanced Raman scattering responses. Chem Sci, 2012, 3: 2262CrossRefGoogle Scholar
  11. 11.
    Qian X, Li J, Nie S. Stimuli-responsive SERS nanoparticles: conformational control of plasmonic coupling and surface Raman enhancement. J Am Chem Soc, 2009, 131: 7540–7541CrossRefGoogle Scholar
  12. 12.
    Gupta S, Agrawal M, Uhlmann P, et al. Gold nanoparticles immobilized on stimuli responsive polymer brushes as nanosensors. Macromolecules, 2008, 41: 8152–8158CrossRefGoogle Scholar
  13. 13.
    Kim NH, Lee SJ, Moskovits M. Aptamer-mediated surface-enhanced Raman spectroscopy intensity amplification. Nano Lett, 2010, 10: 4181–4185CrossRefGoogle Scholar
  14. 14.
    Mubeen S, Zhang S, Kim N, et al. Plasmonic properties of gold nanoparticles separated from a gold mirror by an ultrathin oxide. Nano Lett, 2012, 12: 2088–2094CrossRefGoogle Scholar
  15. 15.
    Tang H, Meng G, Huang Q, et al. Arrays of cone-shaped ZnO nanorods decorated with Ag nanoparticles as 3D surface-enhanced Raman scattering substrates for rapid detection of trace polychlorinated biphenyls. Adv Funct Mater, 2012, 22: 218–224CrossRefGoogle Scholar
  16. 16.
    Lim DK, Jeon KS, Hwang JH, et al. Highly uniform and reproducible surface-enhanced Raman scattering from DNA-tailorable nanoparticles with 1-nm interior gap. Nat Nanotechnol, 2011, 6: 452–460CrossRefGoogle Scholar
  17. 17.
    Gupta S, Agrawal M, Conrad M, et al. Poly(2-(dimethylamino) ethyl methacrylate) brushes with incorporated nanoparticles as a SERS active sensing layer. Adv Funct Mater, 2010, 20: 1756–1761CrossRefGoogle Scholar
  18. 18.
    Agrawal M, Pich A, Zafeiropoulos NE, et al. Polystyrene-ZnO composite particles with controlled morphology. Chem Mater, 2007, 19: 1845–1852CrossRefGoogle Scholar
  19. 19.
    Nie G, Li G, Wang L, et al. Nanocomposites of polymer brush and inorganic nanoparticles: preparation, characterization and application. Polym Chem, 2016, 7: 753–769CrossRefGoogle Scholar
  20. 20.
    Gupta S, Agrawal M, Uhlmann P, et al. Poly(N-isopropyl acrylamide)- gold nanoassemblies on macroscopic surfaces: fabrication, characterization, and application. Chem Mater, 2010, 22: 504–509CrossRefGoogle Scholar
  21. 21.
    Li Y, Bai X, Xu M, et al. Photothermo-responsive Cu7S4@polymer nanocarriers with small sizes and high efficiency for controlled chemo/photothermo therapy. Sci China Mater, 2016, 59: 254–264CrossRefGoogle Scholar
  22. 22.
    Sánchez-Iglesias A, Grzelczak M, Rodríguez-González B, et al. Synthesis of multifunctional composite microgels via in situ Ni growth on pNIPAM-coated Au nanoparticles. ACS Nano, 2009, 3: 3184–3190CrossRefGoogle Scholar
  23. 23.
    Mistark PA, Park S, Yalcin SE, et al. Block-copolymer-based plasmonic nanostructures. ACS Nano, 2009, 3: 3987–3992CrossRefGoogle Scholar
  24. 24.
    Gupta S, Uhlmann P, Agrawal M, et al. Immobilization of silver nanoparticles on responsive polymer brushes. Macromolecules, 2008, 41: 2874–2879CrossRefGoogle Scholar
  25. 25.
    Oren R, Liang Z, Barnard JS, et al. Organization of nanoparticles in polymer brushes. J Am Chem Soc, 2009, 131: 1670–1671CrossRefGoogle Scholar
  26. 26.
    Tokareva I, Minko S, Fendler JH, et al. Nanosensors based on responsive polymer brushes and gold nanoparticle enhanced transmission surface plasmon resonance spectroscopy. J Am Chem Soc, 2004, 126: 15950–15951CrossRefGoogle Scholar
  27. 27.
    Gehan H, Fillaud L, Chehimi MM, et al. Thermo-induced electromagnetic coupling in gold/polymer hybrid plasmonic structures probed by surface-enhanced Raman scattering. ACS Nano, 2010, 4: 6491–6500CrossRefGoogle Scholar
  28. 28.
    Lv C, Xia H, Shi Q, et al. Sensitively humidity-driven actuator based on photopolymerizable PEG-DA films. Adv Mater Interfaces, 2017, 4: 1601002CrossRefGoogle Scholar
  29. 29.
    Han DD, Zhang YL, Jiang HB, et al. Moisture-responsive graphene paper prepared by self-controlled photoreduction. Adv Mater, 2015, 27: 332–338CrossRefGoogle Scholar
  30. 30.
    de Volder M, Tawfick SH, Copic D, et al. Hydrogel-driven carbon nanotube microtransducers. Soft Matter, 2011, 7: 9844–9847CrossRefGoogle Scholar
  31. 31.
    Dong R, Krishnan S, Baird BA, et al. Patterned biofunctional poly- (acrylic acid) brushes on silicon surfaces. Biomacromolecules, 2007, 8: 3082–3092CrossRefGoogle Scholar
  32. 32.
    Kong X, Kawai T, Abe J, et al. Amphiphilic polymer brushes grown from the silicon surface by atom transfer radical polymerization. Macromolecules, 2001, 34: 1837–1844CrossRefGoogle Scholar
  33. 33.
    Michota A, Bukowska J. Surface-enhanced Raman scattering (SERS) of 4-mercaptobenzoic acid on silver and gold substrates. J Raman Spectrosc, 2003, 34: 21–25CrossRefGoogle Scholar
  34. 34.
    Gupta MK, Bansil R. Laser Raman spectroscopy of polyacrylamide. J Polym Sci Polym Phys Ed, 1981, 19: 353–360CrossRefGoogle Scholar
  35. 35.
    Jiang L, Liang X, You T, et al. A sensitive SERS substrate based on Au/TiO2/Au nanosheets. Spectrochim Acta Part A-Mol Biomol Spectr, 2015, 142: 50–54CrossRefGoogle Scholar
  36. 36.
    Sun M, Qian H, Liu J, et al. A flexible conductive film prepared by the oriented stacking of Ag and Au/Ag alloy nanoplates and its chemically roughened surface for explosive SERS detection and cell adhesion. RSC Adv, 2017, 7: 7073–7078CrossRefGoogle Scholar
  37. 37.
    Qian H, Xu M, Li X, et al. Surface micro/nanostructure evolution of Au–Ag alloy nanoplates: Synthesis, simulation, plasmonic photothermal and surface-enhanced Raman scattering applications. Nano Res, 2016, 9: 876–885CrossRefGoogle Scholar
  38. 38.
    Zhang L, Jiang C, Zhang Z. Graphene oxide embedded sandwich nanostructures for enhanced Raman readout and their applications in pesticide monitoring. Nanoscale, 2013, 5: 3773–3779CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Huaxiang Chen (陈华祥)
    • 1
  • Tingting You (尤汀汀)
    • 1
  • Geng Xu (徐更)
    • 1
  • Yukun Gao (高宇坤)
    • 1
  • Chenmeng Zhang (张晨萌)
    • 1
  • Nan Yang (杨楠)
    • 1
  • Penggang Yin (殷鹏刚)
    • 1
    Email author
  1. 1.Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of EducationSchool of Chemistry, Beihang UniversityBeijingChina

Personalised recommendations