Science China Materials

, Volume 61, Issue 3, pp 371–381 | Cite as

Nano-structured red phosphorus/porous carbon as a superior anode for lithium and sodium-ion batteries

  • Jiang Xu (徐江)
  • Jianning Ding (丁建宁)
  • Wenjun Zhu (朱文俊)
  • Xiaoshuang Zhou (周小双)
  • Shanhai Ge (葛善海)
  • Ningyi Yuan (袁宁一)
Articles
  • 179 Downloads

Abstract

To enhance electrochemical performance of lithium or sodium-ion batteries (LIBs or NIBs), active materials are usually filled in porous conductive particles to produce anode composites. However, it is still challenging to achieve high performance anode composites with high specific capacity, excellent rate performance, high initial Coulombic efficiency (ICE) and long cycle life. Based on these requirements, we design and fabricate activated carbon-coated carbon nanotubes (AC@CNT) with hierarchical structures containing micro- and meso-pores. A new structure of phosphorus/carbon composite (P@AC@CNT) is prepared by confining red P in porous carbon through a vaporization-condensation-conversion method. The micro-pores are filled with P, while the meso-pores remain unoccupied, and the pore openings on the particle surface are sealed by P. Due to the unique structure of P@AC@CNT, it displays a high specific capacity of 1674 mA h g−1 at 0.2 C, ultrahigh ICE of 92.2%, excellent rate performance of 1116 mA h g−1 at 6 C, and significantly enhanced cycle stability for LIBs. The application of P@AC@CNT in NIBs is further explored. This method for the fabrication of the special composites with improved electrochemical performance can be extended to other energy storage applications.

Keywords

ion battery red phosphorus/porous carbon composite nanostructure electrochemical performance 

红磷/多孔碳纳米复合材料用于高性能锂离子和钠离子电池负极

摘要

为了提升锂离子或钠离子电池的电化学性能, 通常的做法是将活性材料填充到多孔导电颗粒中来形成复合材料. 然而, 同时实现电池的高容量、高倍率、高首次库仑效率和长循环寿命等性能仍是一项挑战. 针对这些需求, 我们设计并制备了具有分等级微中孔结构的活性炭包覆碳纳米管材料. 采用蒸发冷凝转化法制备了一种将红磷限制在碳材料孔隙中的新型磷/碳(P/C)复合材料. 在这种复合材料中,碳基的微孔被红磷充斥而介孔被保留. 材料颗粒表面的孔隙被红磷所堵塞. 由于所制备的P/C复合材料这种独特的结构, 其在锂离子电池中以0.2 C倍率充放电时展现了高达1674 mA h g−1的比容量和92.2%的首次库仑效率; 在6 C倍率充放时展现1116 mA h g−1的高容量和优秀的循环稳定性. 另外, 所制备的复合材料在钠离子电池中也展示了卓越的性能. 这种采用特殊结构来改善电化学性能的方法可推广到其他电池或储能应用中.

Notes

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (91648109), the National Key Research and Development Program of China (2017YFB0307001), the Priority Academic Program Development of Jiangsu Higher Education Institutions, and 333 project of Jiangsu Province.

Supplementary material

40843_2017_9152_MOESM1_ESM.pdf (4.2 mb)
Nano-structured red phosphorus/porous carbon as a superior anode for lithium and sodium-ion batteries

References

  1. 1.
    Yu HC, Ling C, Bhattacharya J, et al. Designing the next generation high capacity battery electrodes. Energ Environ Sci, 2014, 7: 1760–1768CrossRefGoogle Scholar
  2. 2.
    Wang C, Wang J, Chen H, et al. An interlayer nanostructure of rGO/Sn2Fe-NRs array/rGO with high capacity for lithium ion battery anodes. Sci China Mater, 2016, 59: 927–937CrossRefGoogle Scholar
  3. 3.
    Tarascon JM, Armand M. Issues and challenges facing rechargeable lithium batteries. Nature, 2001, 414: 359–367CrossRefGoogle Scholar
  4. 4.
    Li W, Zeng L, Wu Y, et al. Nanostructured electrode materials for lithium-ion and sodium-ion batteries via electrospinning. Sci China Mater, 2016, 59: 287–321CrossRefGoogle Scholar
  5. 5.
    Liu Z, Zhang Y, Zhao H, et al. Constructing monodispersed MoSe2 anchored on graphene: a superior nanomaterial for sodium storage. Sci China Mater, 2016, 60: 167–177CrossRefGoogle Scholar
  6. 6.
    Yang D, Xu J, Liao XZ, et al. Structure optimization of Prussian blue analogue cathode materials for advanced sodium ion batteries. Chem Commun, 2014, 50: 13377–13380CrossRefGoogle Scholar
  7. 7.
    Wu C, Jiang Y, Kopold P, et al. Peapod-like carbon-encapsulated cobalt chalcogenide nanowires as cycle-stable and high-rate materials for sodium-ion anodes. Adv Mater, 2016, 28: 7276–7283CrossRefGoogle Scholar
  8. 8.
    Li Y, Yan K, Lee HW, et al. Growth of conformal graphene cages on micrometre-sized silicon particles as stable battery anodes. Nat Energ, 2016, 1: 15029CrossRefGoogle Scholar
  9. 9.
    Li W, Yang Z, Li M, et al. Amorphous red phosphorus embedded in highly ordered mesoporous carbon with superior lithium and sodium storage capacity. Nano Lett, 2016, 16: 1546–1553CrossRefGoogle Scholar
  10. 10.
    Che H, Chen S, Xie Y, et al. Electrolyte design strategies and research progress for room-temperature sodium-ion batteries. Energ Environ Sci, 2017, 10: 1075–1101CrossRefGoogle Scholar
  11. 11.
    Wu L, Bresser D, Buchholz D, et al. Unfolding the mechanism of sodium insertion in anatase Tio2 nanoparticles. Adv Energ Mater, 2015, 5: 1401142CrossRefGoogle Scholar
  12. 12.
    Liu S, Feng J, Bian X, et al. A controlled red phosphorus@Ni-P core@shell nanostructure as an ultralong cycle-life and superior high-rate anode for sodium-ion batteries. Energ Environ Sci, 2017, 10: 1222–1233CrossRefGoogle Scholar
  13. 13.
    Zhu J, Chen C, Lu Y, et al. Nitrogen-doped carbon nanofibers derived from polyacrylonitrile for use as anode material in sodiumion batteries. Carbon, 2015, 94: 189–195CrossRefGoogle Scholar
  14. 14.
    Xu J, Wang M, Wickramaratne NP, et al. High-performance sodium ion batteries based on a 3D anode from nitrogen-doped graphene foams. Adv Mater, 2015, 27: 2042–2048CrossRefGoogle Scholar
  15. 15.
    Tang K, Fu L, White RJ, et al. Hollow carbon nanospheres with superior rate capability for sodium-based batteries. Adv Energ Mater, 2012, 2: 873–877CrossRefGoogle Scholar
  16. 16.
    Jache B, Adelhelm P. Use of graphite as a highly reversible electrode with superior cycle life for sodium-ion batteries by making use of co-intercalation phenomena. Angew Chem Int Ed, 2014, 53: 10169–10173CrossRefGoogle Scholar
  17. 17.
    Wu L, Buchholz D, Bresser D, et al. Anatase TiO2 nanoparticles for high power sodium-ion anodes. J Power Sources, 2014, 251: 379–385CrossRefGoogle Scholar
  18. 18.
    He M, Yuan L, Hu X, et al. A SnO2@carbon nanocluster anode material with superior cyclability and rate capability for lithiumion batteries. Nanoscale, 2013, 5: 3298–3305CrossRefGoogle Scholar
  19. 19.
    Ni W, Cheng J, Shi L, et al. Integration of Sn/C yolk–shell nanostructures into free-standing conductive networks as hierarchical composite 3D electrodes and the Li-ion insertion/ extraction properties in a gel-type lithium-ion battery thereof. J Mater Chem A, 2014, 2: 19122–19130CrossRefGoogle Scholar
  20. 20.
    Zhu Y, Han X, Xu Y, et al. Electrospun Sb/C fibers for a stable and fast sodium-ion battery anode. ACS Nano, 2013, 7: 6378–6386CrossRefGoogle Scholar
  21. 21.
    Liu Y, Zhang N, Jiao L, et al. Tin nanodots encapsulated in porous nitrogen-doped carbon nanofibers as a free-standing anode for advanced sodium-ion batteries. Adv Mater, 2015, 27: 6702–6707CrossRefGoogle Scholar
  22. 22.
    David L, Bhandavat R, Singh G. MoS2/graphene composite paper for sodium-ion battery electrodes. ACS Nano, 2014, 8: 1759–1770CrossRefGoogle Scholar
  23. 23.
    Nagao M, Hayashi A, Tatsumisago M. High-capacity Li2S-nanocarbon composite electrode for all-solid-state rechargeable lithium batteries. J Mater Chem, 2012, 22: 10015–10020CrossRefGoogle Scholar
  24. 24.
    Kwon HT, Kim JH, Jeon KJ, et al. CoxP compounds: electrochemical conversion/partial recombination reaction and partially disproportionated nanocomposite for Li-ion battery anodes. RSC Adv, 2014, 4: 43227–43234CrossRefGoogle Scholar
  25. 25.
    Sun J, Lee HW, Pasta M, et al. Carbothermic reduction synthesis of red phosphorus-filled 3D carbon material as a high-capacity anode for sodium ion batteries. Energ Storage Mater, 2016, 4: 130–136CrossRefGoogle Scholar
  26. 26.
    Zhu Y, Wen Y, Fan X, et al. Red phosphorus-single-walled carbon nanotube composite as a superior anode for sodium ion batteries. ACS Nano, 2015, 9: 3254–3264CrossRefGoogle Scholar
  27. 27.
    Li W, Hu S, Luo X, et al. Confined amorphous red phosphorus in MOF-derived N-doped microporous carbon as a superior anode for sodium-ion battery. Adv Mater, 2017, 29: 1605820CrossRefGoogle Scholar
  28. 28.
    Ramireddy T, Xing T, Rahman MM, et al. Phosphorus-carbon nanocomposite anodes for lithium-ion and sodium-ion batteries. J Mater Chem A, 2015, 3: 5572–5584CrossRefGoogle Scholar
  29. 29.
    Yu Z, Song J, Gordin ML, et al. Phosphorus-graphene nanosheet hybrids as lithium-ion anode with exceptional high-temperature cycling stability. Adv Sci, 2015, 2: 1400020CrossRefGoogle Scholar
  30. 30.
    Yuan D, Cheng J, Qu G, et al. Amorphous red phosphorous embedded in carbon nanotubes scaffold as promising anode materials for lithium-ion batteries. J Power Sources, 2016, 301: 131–137CrossRefGoogle Scholar
  31. 31.
    Wang L, He X, Li J, et al. Nano-structured phosphorus composite as high-capacity anode materials for lithium batteries. Angew Chem Int Ed, 2012, 51: 9034–9037CrossRefGoogle Scholar
  32. 32.
    Pei L, Zhao Q, Chen C, et al. Phosphorus nanoparticles encapsulated in graphene scrolls as a high-performance anode for sodium-ion batteries. ChemElectroChem, 2016, 2: 1652–1655CrossRefGoogle Scholar
  33. 33.
    Yabuuchi N, Matsuura Y, Ishikawa T, et al. Phosphorus electrodes in sodium cells: small volume expansion by sodiation and the surface-stabilization mechanism in aprotic solvent. ChemElectroChem, 2014, 1: 580–589CrossRefGoogle Scholar
  34. 34.
    Li W, Yang Z, Jiang Y, et al. Crystalline red phosphorus incorporated with porous carbon nanofibers as flexible electrode for high performance lithium-ion batteries. Carbon, 2014, 78: 455–462CrossRefGoogle Scholar
  35. 35.
    Sun J, Zheng G, Lee HW, et al. Formation of stable phosphoruscarbon bond for enhanced performance in black phosphorus nanoparticle-graphite composite battery anodes. Nano Lett, 2014, 14: 4573–4580CrossRefGoogle Scholar
  36. 36.
    Xin S, Gu L, Zhao NH, et al. Smaller sulfur molecules promise better lithium-sulfur batteries. J Am Chem Soc, 2012, 134: 18510–18513CrossRefGoogle Scholar
  37. 37.
    Zhang X, Jin J, Yan P, et al. Structure and electrochemical performance of graphene/porous carbon coated carbon nanotube composite for supercapacitors. Mater Lett, 2015, 160: 190–193CrossRefGoogle Scholar
  38. 38.
    Raymundo-Piñero E, Azaïs P, Cacciaguerra T, et al. KOH and NaOH activation mechanisms of multiwalled carbon nanotubes with different structural organisation. Carbon, 2005, 43: 786–795CrossRefGoogle Scholar
  39. 39.
    Zhu Y, Murali S, Stoller MD, et al. Carbon-based supercapacitors produced by activation of graphene. Science, 2011, 332: 1537–1541CrossRefGoogle Scholar
  40. 40.
    Wang Y, Tian L, Yao Z, et al. Enhanced reversibility of red phosphorus/active carbon composite as anode for lithium ion batteries. Electrochim Acta, 2015, 163: 71–76CrossRefGoogle Scholar
  41. 41.
    Gogotsi Y, Portet C, Osswald S, et al. Importance of pore size in high-pressure hydrogen storage by porous carbons. Int J Hydrogen Energ, 2009, 34: 6314–6319CrossRefGoogle Scholar
  42. 42.
    Ji J, Ji H, Zhang LL, et al. Graphene-encapsulated Si on ultrathingraphite foam as anode for high capacity lithium-ion batteries. Adv Mater, 2013, 25: 4673–4677CrossRefGoogle Scholar
  43. 43.
    Qian J, Qiao D, Ai X, et al. Reversible 3-Li storage reactions of amorphous phosphorus as high capacity and cycling-stable anodes for Li-ion batteries. Chem Commun, 2012, 48: 8931–8933CrossRefGoogle Scholar
  44. 44.
    Palomares V, Serras P, Villaluenga I, et al. Na-ion batteries, recent advances and present challenges to become low cost energy storage systems. Energ Environ Sci, 2012, 5: 5884–5901CrossRefGoogle Scholar
  45. 45.
    Zhu C, Mu X, van Aken PA, et al. Single-layered ultrasmall nanoplates of MoS2 embedded in carbon nanofibers with excellent electrochemical performance for lithium and sodium storage. Angew Chem Int Ed, 2014, 53: 2152–2156CrossRefGoogle Scholar
  46. 46.
    Zhou X, Wan LJ, Guo YG. Synthesis of MoS2 nanosheet-graphene nanosheet hybrid materials for stable lithium storage. Chem Commun, 2013, 49: 1838CrossRefGoogle Scholar
  47. 47.
    Li W, Li M, Wang M, et al. Electrospinning with partially carbonization in air: Highly porous carbon nanofibers optimized for high-performance flexible lithium-ion batteries. Nano Energ, 2015, 13: 693–701CrossRefGoogle Scholar
  48. 48.
    Yan Y, Yin YX, Guo YG, et al. A sandwich-like hierarchically porous carbon/graphene composite as a high-performance anode material for sodium-ion batteries. Adv Energ Mater, 2014, 4: 1301584CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  • Jiang Xu (徐江)
    • 1
  • Jianning Ding (丁建宁)
    • 1
  • Wenjun Zhu (朱文俊)
    • 1
  • Xiaoshuang Zhou (周小双)
    • 1
  • Shanhai Ge (葛善海)
    • 1
  • Ningyi Yuan (袁宁一)
    • 1
  1. 1.Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Jiangsu Province Cultivation Base for State Key Laboratory of Photovoltaic Science and Technology, Jiangsu Key Laboratory for Solar Cell Materials and TechnologyChangzhou UniversityChangzhouChina

Personalised recommendations