Science China Materials

, Volume 61, Issue 3, pp 401–408 | Cite as

Au nanoparticle@silica@europium coordination polymer nanocomposites for enhanced fluorescence and more sensitive monitoring reactive oxygen species

  • Huiqin Li (李慧勤)
  • Jianhui Yang (杨建辉)
  • Qingqing Deng (邓青青)
  • Shumei Dou (窦树梅)
  • Weiwei Zhao (赵微微)
  • Chong Lin (林冲)
  • Xiaofang Liu (刘晓芳)
Articles

Abstract

Au nanoparticle (Au NP)@SiO2@TDA-Eu nanocomposites were prepared by a two-step process: Au NP@SiO2 nanocomposites were prepared by a modified onepot process. Then the europium coordination polymer was deposited on the surface of the Au NP@SiO2 by mixing 2,2’-thiodiacetic acid [S(CH2COO)22-, TDA] and Eu(NO3)3·6H2O in ethanol via a hydrothermal method. The maximum fluorescent enhancement factor of the nanocomposites was 6.81 at 30 nm thickness of silica between the core of the Au NP and the shell of TDA-Eu. The prepared nanocomposites exhibit more sensitive monitoring of reactive oxygen species.

Keywords

nanocomposites fluorescence enhancement silica coordination polymers reactive oxygen species 

复合纳米材料Au@SiO2@Eu配位聚合物的荧光增强及其对活性氧的高灵敏检测研究

摘要

本论文通过两步工艺成功合成了Au NP@SiO2@TDA-Eu复合纳米材料:采用改进的一锅法制备了纳米复合材料Au NP@SiO2,然后 利用水热法, 在无水乙醇中通过亚硫基二乙酸[S(CH2COO)22-, TDA]和EUNO3)3·6H2O反应, 生成铕的配位聚合物, 并将其沉积在Au NP@SiO2的表面合成复合纳米材料Au NP@SiO2@TDA-Eu.该复合材料在二氧化硅层厚度为30 nm时, 荧光增强最大, 增强因子为6.81,在 对活性氧的检测中,表现出高灵敏度.

Notes

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (51702006 and 21501141), the Doctoral research project (ZK2017027) of Baoji University of Arts and Sciences, and the Education Commission of Shaanxi Province (2015JQ6223, 12JS114, 14JS092 and 17JS009).

Supplementary material

40843_2017_9127_MOESM1_ESM.pdf (303 kb)
Au nanoparticle@silica@europium coordination polymer nanocomposites for enhanced fluorescence and more sensitive monitoring reactive oxygen species

References

  1. 1.
    Fuller SJ, Wragg FPH, Nutter J, et al. Comparison of on-line and off-line methods to quantify reactive oxygen species (ROS) in atmospheric aerosols. Atmos Environ, 2014, 92: 97–103CrossRefGoogle Scholar
  2. 2.
    Sameenoi Y, Koehler K, Shapiro J, et al. Microfluidic electrochemical sensor for on-line monitoring of aerosol oxidative activity. J Am Chem Soc, 2012, 134: 10562–10568CrossRefGoogle Scholar
  3. 3.
    Meyer LV, Schönfeld F, Müller-Buschbaum K. Lanthanide based tuning of luminescence in MOFs and dense frameworks–from mono- and multimetal systems to sensors and films. Chem Commun, 2014, 50: 8093–8108CrossRefGoogle Scholar
  4. 4.
    Wang X, Chang H, Xie J, et al. Recent developments in lanthanidebased luminescent probes. Coord Chem Rev, 2014, 273-274: 201–212CrossRefGoogle Scholar
  5. 5.
    Syamchand SS, Sony G. Europium enabled luminescent nanoparticles for biomedical applications. J Lumin, 2015, 165: 190–215CrossRefGoogle Scholar
  6. 6.
    Wang D, Wang R, Liu L, et al. Down-shifting luminescence of water soluble NaYF4:Eu3+@Ag core-shell nanocrystals for fluorescence turn-on detection of glucose. Sci China Mater, 2017, 60: 68–74CrossRefGoogle Scholar
  7. 7.
    Bhunia A, Gotthardt MA, Yadav M, et al. Salen-based coordination polymers of manganese and the rare-earth elements: synthesis and catalytic aerobic epoxidation of olefins. Chem Eur J, 2013, 19: 1986–1995CrossRefGoogle Scholar
  8. 8.
    Müller-Buschbaum K, Beuerle F, Feldmann C. MOF based luminescence tuning and chemical/physical sensing. Microporous Mesoporous Mater, 2015, 216: 171–199CrossRefGoogle Scholar
  9. 9.
    Decadt R, Van Hecke K, Depla D, et al. Synthesis, crystal structures, and luminescence properties of carboxylate based rare-earth coordination polymers. Inorg Chem, 2012, 51: 11623–11634CrossRefGoogle Scholar
  10. 10.
    Le Natur F, Calvez G, Daiguebonne C, et al. Coordination polymers based on heterohexanuclear rare earth complexes: toward independent luminescence brightness and color tuning. Inorg Chem, 2013, 52: 6720–6730CrossRefGoogle Scholar
  11. 11.
    Hasegawa Y, Nakanishi T. Luminescent lanthanide coordination polymers for photonic applications. RSC Adv, 2015, 5: 338–353CrossRefGoogle Scholar
  12. 12.
    Jankovic V, Yang YM, You J, et al. Active layer-incorporated, spectrally tuned Au/SiO2 core/shell nanorod-based light trapping for organic photovoltaics. ACS Nano, 2013, 7: 3815–3822CrossRefGoogle Scholar
  13. 13.
    Chu Z, Yin C, Zhang S, et al. Surface plasmon enhanced drug efficacy using core–shell Au@SiO2 nanoparticle carrier. Nanoscale, 2013, 5: 3406–3411CrossRefGoogle Scholar
  14. 14.
    Zhang Y, Jiang H, Wang X. Cytidine-stabilized gold nanocluster as a fluorescence turn-on and turn-off probe for dual functional detection of Ag+ and Hg2+. Anal Chem Acta, 2015, 870: 1–7CrossRefGoogle Scholar
  15. 15.
    Acuna GP, Bucher M, Stein IH, et al. Distance dependence of single-fluorophore quenching by gold nanoparticles studied on DNA origami. ACS Nano, 2012, 6: 3189–3195CrossRefGoogle Scholar
  16. 16.
    Abadeer NS, Brennan MR, Wilson WL, et al. Distance and plasmon wavelength dependent fluorescence of molecules bound to silica-coated gold nanorods. ACS Nano, 2014, 8: 8392–8406CrossRefGoogle Scholar
  17. 17.
    Feng AL, You ML, Tian L, et al. Distance-dependent plasmonenhanced fluorescence of upconversion nanoparticles using polyelectrolyte multilayers as tunable spacers. Sci Rep, 2015, 5: 7779CrossRefGoogle Scholar
  18. 18.
    Li M, Cushing SK, Wu N. Plasmon-enhanced optical sensors: a review. Analyst, 2015, 140: 386–406CrossRefGoogle Scholar
  19. 19.
    Sun Y, Guo GZ, Liu Y, et al. Effects of noble metal nanoparticles on the luminescent properties of europium complex. Curr Nanosci, 2010, 6: 103–109CrossRefGoogle Scholar
  20. 20.
    Ming T, Chen H, Jiang R, et al. Plasmon-controlled fluorescence: beyond the intensity enhancement. J Phys Chem Lett, 2012, 3: 191–202CrossRefGoogle Scholar
  21. 21.
    Chen J, Zhang R, Han L, et al. One-pot synthesis of thermally stable gold@mesoporous silica core-shell nanospheres with catalytic activity. Nano Res, 2013, 6: 871–879CrossRefGoogle Scholar
  22. 22.
    Li H, Kang J, Yang J, et al. Distance dependence of fluorescence enhancement in Au nanoparticle@mesoporous silica@europium complex. J Phys Chem C, 2016, 120: 16907–16912CrossRefGoogle Scholar
  23. 23.
    Wang HS, Bao WJ, Ren SB, et al. Fluorescent sulfur-tagged europium(III) coordination polymers for monitoring reactive oxygen species. Anal Chem, 2015, 87: 6828–6833CrossRefGoogle Scholar
  24. 24.
    Li Z, Wang L, Wang Z, et al. Modification of NaYF4:Yb,Er@SiO2 nanoparticles with gold nanocrystals for tunable green-to-red upconversion emissions. J Phys Chem C, 2011, 115: 3291–3296CrossRefGoogle Scholar
  25. 25.
    Liz-Marzán LM, Giersig M, Mulvaney P. Synthesis of nanosized gold-silica core-shell particles. Langmuir, 1996, 12: 4329–4335CrossRefGoogle Scholar
  26. 26.
    http://refractiveindex.info/Google Scholar
  27. 27.
    Zhang J, Fu Y, Lakowicz JR. Luminescent silica core/silver shell encapsulated with Eu(III) complex. J Phys Chem C, 2009, 113: 19404–19410CrossRefGoogle Scholar
  28. 28.
    Saboktakin M, Ye X, Oh SJ, et al. Metal-enhanced upconversion luminescence tunable through metal nanoparticle–nanophosphor separation. ACS Nano, 2012, 6: 8758–8766CrossRefGoogle Scholar
  29. 29.
    Deng W, Jin D, Drozdowicz-Tomsia K, et al. Ultrabright Eu-doped plasmonic Ag@SiO2 nanostructures: time-gated bioprobes with single particle sensitivity and negligible background. Adv Mater, 2011, 23: 4649–4654CrossRefGoogle Scholar
  30. 30.
    Lakowicz JR. Radiative decay engineering 5: metal-enhanced fluorescence and plasmon emission. Anal Biochem, 2005, 337: 171–194CrossRefGoogle Scholar
  31. 31.
    Park W, Lu D, Ahn S. Plasmon enhancement of luminescence upconversion. Chem Soc Rev, 2015, 44: 2940–2962CrossRefGoogle Scholar
  32. 32.
    Gryczynski I, Malicka J, Gryczynski Z, et al. Radiative decay engineering 4. Experimental studies of surface plasmon-coupled directional emission. Anal Biochem, 2004, 324: 170–182CrossRefGoogle Scholar
  33. 33.
    Zhang H, Li Y, Ivanov IA, et al. Plasmonic modulation of the upconversion fluorescence in NaYF4:Yb/Tm hexaplate nanocrystals using gold nanoparticles or nanoshells. Angew Chem, 2010, 122: 2927–2930CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  • Huiqin Li (李慧勤)
    • 1
  • Jianhui Yang (杨建辉)
    • 2
  • Qingqing Deng (邓青青)
    • 2
  • Shumei Dou (窦树梅)
    • 1
  • Weiwei Zhao (赵微微)
    • 1
  • Chong Lin (林冲)
    • 2
  • Xiaofang Liu (刘晓芳)
    • 2
  1. 1.Department of Chemistry and Chemical EngineeringBaoji University of Arts and Sciences, Shaanxi Key Laboratory of phytochemistryBaojiChina
  2. 2.Key Laboratory of Synthetic and Natural Functional Molecule Chemistry (Ministry of Education), Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry & Materials ScienceNorthwest UniversityXi’anChina

Personalised recommendations