Science China Materials

, Volume 60, Issue 9, pp 811–818 | Cite as

Quantum confinement effect of two-dimensional all-inorganic halide perovskites

  • Bo Cai (蔡波)
  • Xiaoming Li (李晓明)
  • Yu Gu (顾宇)
  • Moussab Harb
  • Jianhai Li (李建海)
  • Meiqiu Xie (谢美秋)
  • Fei Cao (曹菲)
  • Jizhong Song (宋继中)
  • Shengli Zhang (张胜利)
  • Luigi Cavallo
  • Haibo Zeng (曾海波)Email author


Quantum confinement effect (QCE), an essential physical phenomenon of semiconductors when the size becomes comparable to the exciton Bohr radius, typically results in quite different physical properties of low-dimensional materials from their bulk counterparts and can be exploited to enhance the device performance in various optoelectronic applications. Here, taking CsPbBr3 as an example, we reported QCE in all-inorganic halide perovskite in two-dimensional (2D) nanoplates. Blue shifts in optical absorption and photoluminescence spectra were found to be stronger in thinner nanoplates than that in thicker nanoplates, whose thickness lowered below ∼7 nm. The exciton binding energy results showed similar trend as that obtained for the optical absorption and photoluminescence. Meanwile, the function of integrated intensity and full width at half maximum and temperature also showed similar results, further supporting our conclusions. The results displayed the QCE in all-inorganic halide perovskite nanoplates and helped to design the all-inorganic halide perovskites with desired optical properties.


quantum confinement effect all-inorganic halide perovskites nanoplates temperature dependence luminescence 



摘要当半导体材料尺寸缩小到与激子尺寸相当的时候, 量子限制效应会在对应的低维材料中诱导出不同的物理行为. 本文以CsPbBr3为例, 报道了在全无机钙钛矿纳米片中的量子限制效应. 根据DFT理论模拟可知, 当CsPbBr3材料减薄至7纳米左右时, 该效应导致该材料的光吸收和光致发光光谱的峰位蓝移, 且样品越薄, 峰位蓝移现象越明显. 该效应也会导致激子束缚能随着材料厚度的减薄而显著增大. 同时, 变温光致发光光谱的光强-温度与半高宽-温度函数都显示出厚度越薄量子限制效应越强的趋势. 本文揭示了二维全无机卤化物钙钛矿的量子限制效应, 可为设计全无机卤化物钙钛矿光电器件提供参考依据.



This work was supported by the National Basic Research Program of China (2014CB931702), the National Key Research and Development Program of China (2016YFB0401701), the National Natural Science Foundation of China (NSFC 51572128 and 21403109), NSFC-RGC (5151101197), the Natural Science Foundation of Jiangsu Province (BK20160827), China Postdoctoral Science Foundation (2016M590455), the Fundamental Research Funds for the Central Universities (30915012205 and 30916015106), and the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

Supplementary material

40843_2017_9090_MOESM1_ESM.pdf (694 kb)
Quantum confinement effect of two-dimensional all inorganic halide perovskites


  1. 1.
    Wu Y, Wei Y, Huang Y, et al. Capping CsPbBr3 with ZnO to improve performance and stability of perovskite memristors. Nano Res, 2017, 10: 1584–1594CrossRefGoogle Scholar
  2. 2.
    Xing G, Mathews N, Sun S, et al. Long-range balanced electronand hole-transport lengths in organic-inorganic CH3NH3PbI3. Science, 2013, 342: 344–347CrossRefGoogle Scholar
  3. 3.
    Stranks SD, Eperon GE, Grancini G, et al. Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science, 2013, 342: 341–344CrossRefGoogle Scholar
  4. 4.
    Qin X, Dong H, Hu W. Green light-emitting diode from bromine based organic-inorganic halide perovskite. Sci China Mater, 2015, 58: 186–191CrossRefGoogle Scholar
  5. 5.
    Tan ZK, Moghaddam RS, Lai ML, et al. Bright light-emitting diodes based on organometal halide perovskite. Nat Nanotech, 2014, 9: 687–692CrossRefGoogle Scholar
  6. 6.
    Dong Y, Gu Y, Zou Y, et al. Improving all-inorganic perovskite photodetectors by preferred orientation and plasmonic effect. Small, 2016, 12: 5622–5632CrossRefGoogle Scholar
  7. 7.
    Li X, Wu Y, Zhang S, et al. CsPbX3 quantum dots for lighting and displays: room-temperature synthesis, photoluminescence superiorities, underlying origins and white light-emitting diodes. Adv Funct Mater, 2016, 26: 2435–2445CrossRefGoogle Scholar
  8. 8.
    Li X, Yu D, Cao F, et al. Healing all-inorganic perovskite films via recyclable dissolution-recyrstallization for compact and smooth carrier channels of optoelectronic devices with high stability. Adv Funct Mater, 2016, 26: 5903–5912CrossRefGoogle Scholar
  9. 9.
    Song J, Li J, Li X, et al. Quantum dot light-emitting diodes based on inorganic perovskite cesium lead halides (CsPbX3). Adv Mater, 2015, 27: 7162–7167CrossRefGoogle Scholar
  10. 10.
    Song J, Xu L, Li J, et al. Monolayer and few-layer all-inorganic perovskites as a new family of two-dimensional semiconductors for printable optoelectronic devices. Adv Mater, 2016, 28: 4861–4869CrossRefGoogle Scholar
  11. 11.
    Wang Y, Li X, Zhao X, et al. Nonlinear absorption and lowthreshold multiphoton pumped stimulated emission from all-inorganic perovskite nanocrystals. Nano Lett, 2016, 16: 448–453CrossRefGoogle Scholar
  12. 12.
    Protesescu L, Yakunin S, Bodnarchuk MI, et al. Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut. Nano Lett, 2015, 15: 3692–3696CrossRefGoogle Scholar
  13. 13.
    Ramasamy P, Lim DH, Kim B, et al. All-inorganic cesium lead halide perovskite nanocrystals for photodetector applications. Chem Commun, 2016, 52: 2067–2070CrossRefGoogle Scholar
  14. 14.
    Li J, Xu L, Wang T, et al. 50-Fold EQE improvement up to 6.27% of solution-processed all-inorganic perovskite CsPbBr3 QLEDs via surface ligand density control. Adv Mater, 2017, 29: 1603885CrossRefGoogle Scholar
  15. 15.
    Dou L, Wong AB, Yu Y, et al. Atomically thin two-dimensional organic-inorganic hybrid perovskites. Science, 2015, 349: 1518–1521CrossRefGoogle Scholar
  16. 16.
    Sichert JA, Tong Y, Mutz N, et al. Quantum size effect in organometal halide perovskite nanoplatelets. Nano Lett, 2015, 15: 6521–6527CrossRefGoogle Scholar
  17. 17.
    Zhang Q, Su R, Liu X, et al. High-quality whispering-gallery-mode lasing from cesium lead halide perovskite nanoplatelets. Adv Funct Mater, 2016, 26: 6238–6245CrossRefGoogle Scholar
  18. 18.
    Akkerman QA, Motti SG, Srimath Kandada AR, et al. Solution synthesis approach to colloidal cesium lead halide perovskite nanoplatelets with monolayer-level thickness control. J Am Chem Soc, 2016, 138: 1010–1016CrossRefGoogle Scholar
  19. 19.
    Tsai H, Nie W, Blancon JC, et al. High-efficiency two-dimensional Ruddlesden–Popper perovskite solar cells. Nature, 2016, 536: 312–316CrossRefGoogle Scholar
  20. 20.
    Ithurria S, Tessier MD, Mahler B, et al. Colloidal nanoplatelets with two-dimensional electronic structure. Nat Mater, 2011, 10: 936–941CrossRefGoogle Scholar
  21. 21.
    Ha ST, Liu X, Zhang Q, et al. Synthesis of organic-inorganic lead halide perovskite nanoplatelets: towards high-performance perovskite solar cells and optoelectronic devices. Adv Optical Mater, 2014, 2: 838–844CrossRefGoogle Scholar
  22. 22.
    Zhang Q, Ha ST, Liu X, et al. Room-temperature near-infrared high-Q perovskite whispering-gallery planar nanolasers. Nano Lett, 2014, 14: 5995–6001CrossRefGoogle Scholar
  23. 23.
    Ling Y, Yuan Z, Tian Y, et al. Bright light-emitting diodes based on organometal halide perovskite nanoplatelets. Adv Mater, 2016, 28: 305–311CrossRefGoogle Scholar
  24. 24.
    Bekenstein Y, Koscher BA, Eaton SW, et al. Highly luminescent colloidal nanoplates of perovskite cesium lead halide and their oriented assemblies. J Am Chem Soc, 2015, 137: 16008–16011CrossRefGoogle Scholar
  25. 25.
    Jie D, Yan Q. Progress in organic-inorganic hybrid halide perovskite single crystal: growth techniques and applications. Sci China Mater, doi: 10.1007/s40843-017-9039-8Google Scholar
  26. 26.
    Cao D, Stoumpos C, Yokoyama T, et al. Thin films and solar cells based on semiconducting two-dimensional ruddlesden–popper (CH3(CH2)3NH3)2(CH3NH3)n−1SnnI3n+1 perovskites. ACS Energy Lett, 2017, 2: 982–990CrossRefGoogle Scholar
  27. 27.
    Huo C, Cai B, Yuan Z, et al. Two-dimensional metal halide perovskites: theory, synthesis, and optoelectronics. Small Methods, 2017, 1: 1600018CrossRefGoogle Scholar
  28. 28.
    Chen S, Shi G. Two-dimensional materials for halide perovskitebased optoelectronic devices. Adv MaterGoogle Scholar
  29. 29.
    Xiong Y, Liu T, Jiang X, et al. N-type metal-oxide electron transport layer for mesoscopic perovskite solar cells. Sci China Mater, 2016, 59: 757–768CrossRefGoogle Scholar
  30. 30.
    Ye L, Fan B, Zhang S, et al. Perovskite-polymer hybrid solar cells with near-infrared external quantum efficiency over 40%. Sci China Mater, 2015, 58: 953–960CrossRefGoogle Scholar
  31. 31.
    Quantum Confinement Effect–Shodhganga. http://http://shodhganga. Scholar
  32. 32.
    Excitons in bulk and two-dimensional semiconductors. Scholar
  33. 33.
    Valerini D, Cretí A, Lomascolo M, et al. Temperature dependence of the photoluminescence properties of colloidal CdSe/ZnS core/shell quantum dots embedded in a polystyrene matrix. Phys Rev B, 2005, 71: 235409CrossRefGoogle Scholar
  34. 34.
    Dey P, Paul J, Bylsma J, et al. Origin of the temperature dependence of the band gap of PbS and PbSe quantum dots. Solid State Commun, 2013, 165: 49–54CrossRefGoogle Scholar
  35. 35.
    Zhao YS, Fu H, Peng A, et al. Low-dimensional nanomaterials based on small organic molecules: preparation and optoelectronic properties. Adv Mater, 2008, 20: 2859–2876CrossRefGoogle Scholar
  36. 36.
    Jing P, Zheng J, Ikezawa M, et al. Temperature-dependent photoluminescence of CdSe-core CdS/CdZnS/ZnS-multishell quantum dots. J Phys Chem C, 2009, 113: 13545–13550CrossRefGoogle Scholar
  37. 37.
    Varshni YP. Temperature dependence of the energy gap in semiconductors. Physica, 1967, 34: 149–154CrossRefGoogle Scholar
  38. 38.
    Wei S, Zunger A. Electronic and Structural anomalies in lead chalcogenides. Phys Rev B, 1997, 55: 13605CrossRefGoogle Scholar
  39. 39.
    M Ueta, H Kanzaki, K Kobayashi, Y Toyozawa, E Hanamura. Exciton-phonon processes in silver halides. In Excitonic Processes in Solids. Berlin: Springer Berlin Heidelberg, 1986, 309–369CrossRefGoogle Scholar
  40. 40.
    Stoumpos CC, Malliakas CD, Peters JA, et al. Crystal growth of the perovskite semiconductor CsPbBr3: a new material for high-energy radiation detection. Cryst Growth Des, 2013, 13: 2722–2727CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Bo Cai (蔡波)
    • 1
  • Xiaoming Li (李晓明)
    • 1
  • Yu Gu (顾宇)
    • 1
  • Moussab Harb
    • 2
  • Jianhai Li (李建海)
    • 1
  • Meiqiu Xie (谢美秋)
    • 1
  • Fei Cao (曹菲)
    • 1
  • Jizhong Song (宋继中)
    • 1
  • Shengli Zhang (张胜利)
    • 1
  • Luigi Cavallo
    • 2
  • Haibo Zeng (曾海波)
    • 1
    Email author
  1. 1.MIIT Key Laboratory of Advanced Display Materials and Devices, Institute of Optoelectronics & Nanomaterials, College of Materials Science and EngineeringNanjing University of Science and TechnologyNanjingChina
  2. 2.King Abdullah University of Science and Technology (KAUST), KAUST Catalysis Center (KCC)Physical Sciences and Engineering Division (PSE)ThuwalSaudi Arabia

Personalised recommendations