Science China Materials

, Volume 60, Issue 9, pp 819–828 | Cite as

Design and synthesis of low band gap non-fullerene acceptors for organic solar cells with impressively high Jsc over 21 mA cm_2

  • Huan-Huan Gao (高欢欢)
  • Yanna Sun (孙延娜)
  • Xiangjian Wan (万相见)Email author
  • Bin Kan (阚斌)
  • Xin Ke (柯鑫)
  • Hongtao Zhang (张洪涛)
  • Chenxi Li (李晨曦)
  • Yongsheng Chen (陈永胜)Email author


Three low bandgap non-fullerene acceptors based on thieno[3,2-b]thiophene fused core with different ending groups, named TTIC-M, TTIC, TTIC-F were designed and synthesized. Using a wide bandgap polymer PBDB-T as donor to form a complementary absorption in the range of 300–900 nm, high efficencies of 9.97%, 10.87% and 9.51% were achieved for TTIC-M, TTIC and TTFC-F based photovoltaic devices with impressively high short circuit current over 21 mA cm−2.


A-D-A type non-fullerene acceptors low bandgap high short circuit current values 

窄带系非富勒烯受体用于有机太阳电池获得超过21 mA cm−2的短路电路密度


本文设计合成了基于噻吩[3,2b]噻吩稠环受体具有不同末端基团的三个窄带系非富勒烯受体TTIC-M, TTIC和TTIC-F. 采用宽带隙聚合物PBDB-T为给体在300–900 nm光谱范围内形成了互补光吸收, 基于TTIC-M, TTIC和TTIC-F的光伏器件分别获得了高达9.97%,10.87%和9.51%的效率和高达21 mA cm−2的短路电流密度.



The work was supported by the Minstry of Science and Technology (2014CB643502), the National Natural Science Foundation of China (91633301, 51422304 and 91433101), PCSIRT (IRT1257) and Tianjin city (17JCZDJC31100).

Supplementary material

40843_2017_9084_MOESM1_ESM.pdf (1.3 mb)
Design and synthesis of low band gap non-fullerene acceptors for organic solar cells with impressively high Jsc over 21 mA cm_2


  1. 1.
    Ganesamoorthy R, Sathiyan G, Sakthivel P. Review: fullerene based acceptors for efficient bulk heterojunction organic solar cell applications. Sol Energ Mater Sol Cells, 2017, 161: 102–148CrossRefGoogle Scholar
  2. 2.
    Lai YY, Cheng YJ, Hsu CS. Applications of functional fullerene materials in polymer solar cells. Energ Environ Sci, 2014, 7: 1866CrossRefGoogle Scholar
  3. 3.
    Jamieson FC, Domingo EB, McCarthy-Ward T, et al. Fullerenecrystallisation as a key driver of charge separation in polymer/ fullerene bulk heterojunction solar cells. Chem Sci, 2012, 3: 485–492CrossRefGoogle Scholar
  4. 4.
    Troshin PA, Hoppe H, Renz J, et al. Material solubility-photovoltaic performance relationship in the design of novel fullerene derivatives for bulk heterojunction solar cells. Adv Funct Mater, 2009, 19: 779–788CrossRefGoogle Scholar
  5. 5.
    Prachumrak N, Sudyoadsuk T, Thangthong A, et al. Improvement of D–π–A organic dye-based dye-sensitized solar cell performance by simple triphenylamine donor substitutions on the π-linker of the dye. Mater Chem Front, 2017, 1: 1059–1072CrossRefGoogle Scholar
  6. 6.
    Huang J, Wang H, Yan K, et al. Highly efficient organic solar cells consisting of double bulk heterojunction layers. Adv Mater, 2017, 29: 1606729CrossRefGoogle Scholar
  7. 7.
    Kan B, Li M, Zhang Q, et al. A series of simple oligomer-like small molecules based on oligothiophenes for solution-processed solar cells with high efficiency. J Am Chem Soc, 2015, 137: 3886–3893CrossRefGoogle Scholar
  8. 8.
    Zhang Q, Kan B, Liu F, et al. Small-molecule solar cells with efficiency over 9%. Nat Photon, 2014, 9: 35–41CrossRefGoogle Scholar
  9. 9.
    Meng D, Sun D, Zhong C, et al. High-performance solution-processed non-fullerene organic solar cells based on selenophenecontaining perylene bisimide acceptor. J Am Chem Soc, 2016, 138: 375–380CrossRefGoogle Scholar
  10. 10.
    Lin Y, Zhao F, Wu Y, et al. Mapping polymer donors toward highefficiency fullerene free organic solar cells. Adv Mater, 2017, 29: 1604155CrossRefGoogle Scholar
  11. 11.
    Liu Y, Zhang H, Sun Y, et al. A-D-A-type small molecular acceptor with one hexyl-substituted thiophene as π bridge for fullerene-free organic solar cells. Sci China Mater, 2017, 60: 49–56CrossRefGoogle Scholar
  12. 12.
    Chen W, Zhang Q. Recent progress in non-fullerene small molecule acceptors in organic solar cells (OSCs). J Mater Chem C, 2017, 5: 1275–1302CrossRefGoogle Scholar
  13. 13.
    Chen W, Yang X, Long G, et al. A perylene diimide (PDI)-based small molecule with tetrahedral configuration as a non-fullerene acceptor for organic solar cells. J Mater Chem C, 2015, 3: 4698–4705CrossRefGoogle Scholar
  14. 14.
    Zhao W, Zhang S, Hou J. Realizing 11.3% efficiency in fullerenefree polymer solar cells by device optimization. Sci China Chem, 2016, 59: 1574–1582CrossRefGoogle Scholar
  15. 15.
    Cui Y, Yao H, Gao B, et al. Fine-tuned photoactive and interconnection layers for achieving over 13% efficiency in a fullerenefree tandem organic solar cell. J Am Chem Soc, 2017, 139: 7302–7309CrossRefGoogle Scholar
  16. 16.
    Zhao W, Li S, Yao H, et al. Molecular optimization enables over 13% efficiency in organic solar cells. J Am Chem Soc, 2017, 139: 7148–7151CrossRefGoogle Scholar
  17. 17.
    Chen S, Liu Y, Zhang L, et al. A wide-bandgap donor polymer for highly efficient non-fullerene organic solar cells with a small voltage loss. J Am Chem Soc, 2017, 139: 6298–6301CrossRefGoogle Scholar
  18. 18.
    Zhong L, Gao L, Bin H, et al. High efficiency ternary nonfullerene polymer solar cells with two polymer donors and an organic semiconductor acceptor. Adv Energ Mater, 2017, 7: 1602215CrossRefGoogle Scholar
  19. 19.
    Liu F, Zhou Z, Zhang C, et al. Efficient semitransparent solar cells with high NIR responsiveness enabled by a small-bandgap electron acceptor. Adv Mater, 2017, 29: 1606574CrossRefGoogle Scholar
  20. 20.
    Yang L, Zhang S, He C, et al. New wide band gap donor for efficient fullerene-free all-small-molecule organic solar cells. J Am Chem Soc, 2017, 139: 1958–1966CrossRefGoogle Scholar
  21. 21.
    Yu R, Zhang S, Yao H, et al. Two well-miscible acceptors work as one for efficient fullerene-free organic solar cells. Adv Mater, 2017, 29: 1700437CrossRefGoogle Scholar
  22. 22.
    Lin Y, Zhao F, He Q, et al. High-performance electron acceptor with thienyl side chains for organic photovoltaics. J Am Chem Soc, 2016, 138: 4955–4961CrossRefGoogle Scholar
  23. 23.
    Li S, Ye L, Zhao W, et al. Energy-level modulation of small-molecule electron acceptors to achieve over 12% efficiency in polymer solar cells. Adv Mater, 2016, 28: 9423–9429CrossRefGoogle Scholar
  24. 24.
    Yao H, Cui Y, Yu R, et al. Design, synthesis, and photovoltaic characterization of a small molecular acceptor with an ultra-narrow band gap. Angew Chem Int Ed, 2017, 56: 3045–3049CrossRefGoogle Scholar
  25. 25.
    Dai S, Zhao F, Zhang Q, et al. Fused nonacyclic electron acceptors for efficient polymer solar cells. J Am Chem Soc, 2017, 139: 1336–1343CrossRefGoogle Scholar
  26. 26.
    Qiu N, Zhang H, Wan X, et al. A new nonfullerene electron acceptor with a ladder type backbone for high-performance organic solar cells. Adv Mater, 2017, 29: 1604964CrossRefGoogle Scholar
  27. 27.
    Kan B, Feng H, Wan X, et al. Small-molecule acceptor based on the heptacyclic benzodi(cyclopentadithiophene) unit for highly efficient nonfullerene organic solar cells. J Am Chem Soc, 2017, 139: 4929–4934CrossRefGoogle Scholar
  28. 28.
    Cheng YJ, Yang SH, Hsu CS. Synthesis of conjugated polymers for organic solar cell applications. Chem Rev, 2009, 109: 5868–5923CrossRefGoogle Scholar
  29. 29.
    Zhang Q, Wang Y, Kan B, et al. A solution-processed high performance organic solar cell using a small molecule with the thieno [3,2-b]thiophene central unit. Chem Commun, 2015, 51: 15268–15271CrossRefGoogle Scholar
  30. 30.
    Cao Q, Xiong W, Chen H, et al. Design, synthesis, and structural characterization of the first dithienocyclopentacarbazole-based ntype organic semiconductor and its application in non-fullerene polymer solar cells. J Mater Chem A, 2017, 5: 7451–7461CrossRefGoogle Scholar
  31. 31.
    Liu F, Zhou Z, Zhang C, et al. A thieno[3,4-b]thiophene-based non-fullerene electron acceptor for high-performance bulk-heterojunction organic solar cells. J Am Chem Soc, 2016, 138: 15523–15526CrossRefGoogle Scholar
  32. 32.
    Xiao B, Tang A, Zhang J, et al. Achievement of high V oc of 1.02 V for P3HT-based organic solar cell using a benzotriazole-containing non-fullerene acceptor. Adv Energ Mater, 2017, 7: 1602269CrossRefGoogle Scholar
  33. 33.
    Qian D, Ye L, Zhang M, et al. Design, application, and morphology study of a new photovoltaic polymer with strong aggregation in solution state. Macromolecules, 2012, 45: 9611–9617CrossRefGoogle Scholar
  34. 34.
    Wang W, Yan C, Lau TK, et al. Fused hexacyclic nonfullerene acceptor with strong near-infrared absorption for semitransparent organic solar cells with 9.77% efficiency. Adv Mater, 2017, 49: 1701308CrossRefGoogle Scholar
  35. 35.
    Bronstein H, Ashraf RS, Kim Y, et al. Synthesis of a novel fused thiophene-thieno[3,2-b]thiophene-thiophene donor monomer and co-polymer for use in OPV and OFETs. Macromol Rapid Commun, 2011, 32: 1664–1668CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  • Huan-Huan Gao (高欢欢)
    • 1
  • Yanna Sun (孙延娜)
    • 1
  • Xiangjian Wan (万相见)
    • 1
    Email author
  • Bin Kan (阚斌)
    • 1
  • Xin Ke (柯鑫)
    • 1
  • Hongtao Zhang (张洪涛)
    • 1
  • Chenxi Li (李晨曦)
    • 1
  • Yongsheng Chen (陈永胜)
    • 1
    Email author
  1. 1.State Key Laboratory of Elemento-Organic Chemistry, Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, College of ChemistryNankai UniversityTianjinChina

Personalised recommendations