Advertisement

Science China Materials

, Volume 60, Issue 9, pp 903–908 | Cite as

Atomic layer reversal on CeO2 (100) surface

  • Jinglu Huang (黄静露)
  • Yunbo Yu (余运波)
  • Jing Zhu (朱静)
  • Rong Yu (于荣)Email author
Letter

Abstract

The structure and properties of CeO2 surfaces have been intensively studied due to their importance in a lot of surface-related applications. Since most of surface techniques probe the structure information inside the outermost surface plane, the subsurface structure information has been elusive in many studies. Using the profile imaging with aberration-corrected transmission electron microscopy, the structure information in both the outermost layer and the sublayers of the CeO2 (100) surface has been obtained. In addition to the normal structures that have been reported before, where the surface is Ce- or O-terminated, a metastable surface has been discovered. In the new structure, there is an atomic layer reversal between the outermost layer and the sublayer, giving a structure with O as the outermost layer for the stoichiometry of normal Ce-terminated surface. The charge redistribution for the polarity compensation has also been changed relative to the normal surface.

Keywords

surface structure ceria atomic layer reversal aberration-corrected TEM first-principles calculations 

二氧化铈(100)表面的原子面反转

摘要

氧化铈表面的结构与性能对氧化铈材料的许多实际应用有着重要的影响, 因此受到了广泛的关注和研究. 由于大多数的表面技术仅限 于获得表面最外层原子的结构信息, 对材料亚表面的结构信息还非常匮乏. 我们基于像差校正高分辨透射电子显微技术, 同时获得了氧化铈 (100)表面和亚表面的结构信息, 从而揭示了氧化铈(100)表面的一种亚稳态. 在这种新结构中, 表面最外层和次外层原子面发生了反转, 使得具 有Ce终结的化学计量比的表面以O原子面暴露在最外层. 伴随这种原子面反转, 为了补偿表面极性的电荷重排也不同于正常的(100)表面.

Notes

Acknowledgements

This work was supported by the National natural Science Foundation of China (51525102, 51390475, 51371102 and 21673277) and the National Basic Research Program of China (2015CB654902). In this work we used the resources of the National Center for Electron Microscopy in Beijing and Shanghai Supercomputer Center.

References

  1. 1.
    Corma A, Atienzar P, García H, et al. Hierarchically mesostructured doped CeO2 with potential for solar-cell use. Nat Mater, 2004, 3: 394–397CrossRefGoogle Scholar
  2. 2.
    Gorte RJ, Park S, Vohs JM. Direct oxidation of hydrocarbons in a solid-oxide fuel cell. Nature, 2000, 404: 265–267CrossRefGoogle Scholar
  3. 3.
    Atkinson A, Barnett S, Gorte RJ, et al. Advanced anodes for hightemperature fuel cells. Nat Mater, 2004, 3: 17–27CrossRefGoogle Scholar
  4. 4.
    Mohanty BC, Lee JW, Yeon DH, et al. Dopant induced variations in microstructure and optical properties of CeO2 nanoparticles. Mater Res Bull, 2011, 46: 875–883CrossRefGoogle Scholar
  5. 5.
    Zholobak NM, Shcherbakov AB, Bogorad-Kobelska AS, et al. Panthenol-stabilized cerium dioxide nanoparticles for cosmeceutic formulations against ROS-induced and UV-induced damage. J PhotoChem PhotoBiol B-Biol, 2014, 130: 102–108CrossRefGoogle Scholar
  6. 6.
    Liu KQ, Kuang CX, Zhong MQ, et al. Synthesis, characterization and UV-shielding property of polystyrene-embedded CeO2 nanoparticles. Optical Mater, 2013, 35: 2710–2715CrossRefGoogle Scholar
  7. 7.
    Trovarelli A. Catalytic properties of ceria and CeO2-containing materials. Catal Rev, 1996, 38: 439–520CrossRefGoogle Scholar
  8. 8.
    Ratnasamy C, Wagner JP. Water gas shift catalysis. Catal Rev, 2009, 51: 325–440CrossRefGoogle Scholar
  9. 9.
    Beckers J, Rothenberg G. Sustainable selective oxidations using ceria-based materials. Green Chem, 2010, 12: 939–948CrossRefGoogle Scholar
  10. 10.
    Vivier L, Duprez D. Ceria-based solid catalysts for organic chemistry. ChemSusChem, 2010, 3: 654–678CrossRefGoogle Scholar
  11. 11.
    Campbell CT, Peden CHF. Oxygen vacancies and catalysis on ceria surfaces. Science, 2005, 309: 713–714CrossRefGoogle Scholar
  12. 12.
    Wang F, He S, Chen H, et al. Active site dependent reaction mechanism over Ru/CeO2 catalyst toward CO2 methanation. J Am Chem Soc, 2016, 138: 6298–6305CrossRefGoogle Scholar
  13. 13.
    Cordeiro MAL, Weng W, Stroppa DG, et al. High resolution electron microscopy study of nanocubes and polyhedral nanocrystals of cerium(IV) oxide. Chem Mater, 2013, 25: 2028–2034CrossRefGoogle Scholar
  14. 14.
    Si R, Flytzani-Stephanopoulos M. Shape and crystal-plane effects of nanoscale ceria on the activity of Au-CeO2 catalysts for the watergas shift reaction. Angew Chem Int Ed, 2008, 47: 2884–2887CrossRefGoogle Scholar
  15. 15.
    Fu Q, Saltsburg H, Flytzani-Stephanopoulos M. Active nonmetallic Au and Pt species on ceria-based water-gas shift catalysts. Science, 2003, 301: 935–938CrossRefGoogle Scholar
  16. 16.
    Namai Y, Fukui KI, Iwasawa Y. Atom-resolved noncontact atomic force microscopic and scanning tunneling microscopic observations of the structure and dynamic behavior of CeO2(111) surfaces. Catal Today, 2003, 85: 79–91CrossRefGoogle Scholar
  17. 17.
    Namai Y, Fukui K, Iwasawa Y. Atom-resolved noncontact atomic force microscopic observations of CeO2 (111) surfaces with different oxidation states: surface structure and behavior of surface oxygen atoms. J Phys Chem B, 2003, 107: 11666–11673CrossRefGoogle Scholar
  18. 18.
    Esch F, Fabris S, Zhou L, et al. Electron localization determines defect formation on ceria substrates. Science, 2005, 309: 752–755CrossRefGoogle Scholar
  19. 19.
    Huang JL, Li Z, Duan HH, et al. Formation of hexagonal-close packed (HCP) rhodium as a size effect. J Am Chem Soc, 2017, 139: 575–578CrossRefGoogle Scholar
  20. 20.
    Lin Y, Wu Z, Wen J, et al. Imaging the atomic surface structures of CeO2 nanoparticles. Nano Lett, 2014, 14: 191–196CrossRefGoogle Scholar
  21. 21.
    Haigh SJ, Young NP, Sawada H, et al. Imaging the active surfaces of cerium dioxide nanoparticles. ChemPhysChem, 2011, 12: 2397–2399CrossRefGoogle Scholar
  22. 22.
    Wang L, Wang Y, Zhang Y, et al. Shape dependence of nanoceria on complete catalytic oxidation of o-xylene. Catal Sci Technol, 2016, 6: 4840–4848CrossRefGoogle Scholar
  23. 23.
    Blöchl PE. Projector augmented-wave method. Phys Rev B, 1994, 50: 17953–17979CrossRefGoogle Scholar
  24. 24.
    Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B, 1996, 54: 11169–11186CrossRefGoogle Scholar
  25. 25.
    Kresse G, Furthmüller J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comp Mater Sci, 1996, 6: 15–50CrossRefGoogle Scholar
  26. 26.
    Andersson DA, Simak SI, Johansson B, et al. Modeling of CeO2, Ce2O3, and CeO2−x in the LDA + U formalism. Phys Rev B, 2007, 75: 035109CrossRefGoogle Scholar
  27. 27.
    Zhang C, Michaelides A, King DA, et al. Oxygen vacancy clusters on ceria: decisive role of cerium f electrons. Phys Rev B, 2009, 79: 075433CrossRefGoogle Scholar
  28. 28.
    Tasker PW. The stability of ionic crystal surfaces. J Phys C-Solid State Phys, 1979, 12: 4977–4984CrossRefGoogle Scholar
  29. 29.
    Skorodumova NV, Baudin M, Hermansson K. Surface properties of CeO2 from first principles. Phys Rev B, 2004, 69: 075401CrossRefGoogle Scholar
  30. 30.
    Nolan M, Grigoleit S, Sayle DC, et al. Density functional theory studies of the structure and electronic structure of pure and defective low index surfaces of ceria. Surf Sci, 2005, 576: 217–229CrossRefGoogle Scholar
  31. 31.
    Bhatta UM, Ross IM, Sayle TXT, et al. Cationic surface reconstructions on cerium oxide nanocrystals: an aberration-corrected HRTEM study. ACS Nano, 2012, 6: 421–430CrossRefGoogle Scholar
  32. 32.
    Möbus G, Saghi Z, Sayle DC, et al. Dynamics of polar surfaces on ceria nanoparticles observed in situ with single-atom resolution. Adv Funct Mater, 2011, 21: 1971–1976CrossRefGoogle Scholar
  33. 33.
    Ling Y, Wang Z, Wang Z, et al. A robust carbon tolerant anode for solid oxide fuel cells. Sci China Mater, 2015, 58: 204–212CrossRefGoogle Scholar
  34. 34.
    Capdevila-Cortada M, López N. Entropic contributions enhance polarity compensation for CeO2 (100) surfaces. Nat Mater, 2016, 16: 328–334CrossRefGoogle Scholar
  35. 35.
    Lin Y, Wu Z, Wen J, et al. Adhesion and atomic structures of gold on ceria nanostructures: the role of surface structure and oxidation state of ceria supports. Nano Lett, 2015, 15: 5375–5381CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  • Jinglu Huang (黄静露)
    • 1
  • Yunbo Yu (余运波)
    • 2
    • 3
    • 4
  • Jing Zhu (朱静)
    • 1
  • Rong Yu (于荣)
    • 1
    Email author
  1. 1.National Center for Electron Microscopy in Beijing, Key Laboratory of Advanced Materials of Ministry of Education of China and State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and EngineeringTsinghua UniversityBeijingChina
  2. 2.State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental SciencesChinese Academy of SciencesBeijingChina
  3. 3.Center for Excellence in Regional Atmospheric Environment, Institute of Urban EnvironmentChinese Academy of SciencesXiamenChina
  4. 4.University of Chinese Academy of SciencesBeijingChina

Personalised recommendations