All Fat Point Subschemes in \({\mathbb {P}}^2\) with the Waldschmidt Constant Less than 5 / 2
- 3 Downloads
Abstract
Let \({\mathscr {A}}=m_1p_1+ \cdots +m_np_n\) be a fat point subscheme of \({\mathbb {P}}^2\), and let \(I({\mathscr {A}})\), which is called a fat point ideal, be its corresponding ideal in \({\mathbb {K}}[{\mathbb {P}}^2]\). In this note, we identify those fat point ideals in \({\mathbb {K}} [{\mathbb {P}}^2]\) for which their Waldschmidt constants are less than 5 / 2.
Keywords
Configuration of points Star configuration Symbolic power Waldschmidt constant Fat pointsMathematics Subject Classification
Primary 14N20 13A02 Secondary 14N05 13F20Notes
Acknowledgements
We would like to thank the anonymous referee for her/his careful reading of this manuscript, valuable suggestions and making helpful remarks. These all helped to improve the manuscript. This paper was prepared based on a research project supported by K.N. Toosi University of Technology research council and Iran National Science Foundation (INSF) Grant No. 97008366.
References
- 1.Bocci, C., Harbourne, B.: Comparing powers and symbolic powers of ideals. J. Algebraic Geom. 19(3), 399–417 (2010)MathSciNetCrossRefGoogle Scholar
- 2.Chang, Y., Jow, S.: Demailly’s conjecture on Waldschmodt constants for sufficiently many very general points in \({\mathbb{P}}^N\) (2019). (preprint). arXiv:1903.05824v1
- 3.Ciliberto, C., Miranda, R.: Nagata’s conjecture for a square or nearly-square number of points. Ric. Mat. 55(1), 71–78 (2006)MathSciNetCrossRefGoogle Scholar
- 4.Demailly, J.P.: Formules de Jensen en plusieurs variables et applications arithmétiques. Bull. Soc. Math. France 110(1), 75–102 (1992)zbMATHGoogle Scholar
- 5.Dumnicki, M., Szemberg, T., Tutaj-Gasińska, H.: Symbolic powers of planar point configurations. J. Pure Appl. Algebra 217(6), 1026–1036 (2013)MathSciNetCrossRefGoogle Scholar
- 6.Dumnicki, M., Szemberg, T., Tutaj-Gasińska, H.: Symbolic powers of planar point configurations II. J. Pure Appl. Alg 220, 2001–2016 (2016)MathSciNetCrossRefGoogle Scholar
- 7.Evain, L.: it Computing limit linear series with infinitesimal methods. Ann. Inst. Fourier 57, 307–327 (2007)MathSciNetCrossRefGoogle Scholar
- 8.Farnik, Ł., Gwoździewicz, J., Hejmej, B., Lampa-Baczyńska, M., Malara, G., Szpond, J.: Initial sequence and Waldschmidt constants of planar point configurations, internat. J. Algebra Comput. 27(6), 717–729 (2017)MathSciNetCrossRefGoogle Scholar
- 9.Haghighi, H., Mosakhani, M., Fashami, M.Zaman: Resurgence and Waldschmidt constant of the ideal of fat almost collinear subscheme in \({\mathbb{P}}^2\). Ann. Univ. Paedagog. Crac. Stud. Math. 17, 59–65 (2018)MathSciNetzbMATHGoogle Scholar
- 10.Haghighi, H., Mosakhani, M.: All symbolic powers and ordinary powers of the defining ideal of a fat nearly-complete intersection are equal. J. Algebra Appl. 18(8), 1950142 (2019). 9MathSciNetCrossRefGoogle Scholar
- 11.Harbourne, B.: The atlas of Waldschmidt constants (2019). www.math.unl.edu/~bharbourne1/GammaFile.thml
- 12.Harbourne, B., Huneke, C.: Are symbolic powers highly evolved. J. Ramunajan Math. Soc. 28A, 247–266 (2013)MathSciNetzbMATHGoogle Scholar
- 13.Hirschowitz, A.: La méthod d’Horace pour l’interpolation à plusieurs variables. Manus. Math. 50, 337–388 (1985)CrossRefGoogle Scholar
- 14.Malara, G., Szemberg, T., Szpond, J.: On a conjecture of Demailly and new bounds on Waldschmidt constants in \({\mathbb{P}}^N\). J. Number Theory 189, 211–219 (2018)MathSciNetCrossRefGoogle Scholar
- 15.Moreau, J.C.: Lemmes de Schwartz en plusieurs variables et applications arithmétique, in Séminaire Pierre Leleng-Henri Skoda (Analyse). Années 1978/79 (French). In: Lecture Notes in Math., vol. 822, pp. 174–190. Springer, Berlin (1980)Google Scholar
- 16.Mosakhani, M., Haghighi, H.: On the configurations of points in \({\mathbb{P}}^2\) with the Waldschmidt constant equal to two. J. Pure Appl. Algebra 220(12), 3821–3825 (2016)MathSciNetCrossRefGoogle Scholar
- 17.Nagata, M.: On the 14th problem of Hilbert. Amer. J. Math. 81, 766–772 (1959)MathSciNetCrossRefGoogle Scholar
- 18.Reed, D.: On a problem of Zariski. Illinois J. Math. 2, 145–149 (1958)MathSciNetCrossRefGoogle Scholar
- 19.Schenzel, P.: Filtrations and Noetherian symbolic blow-up rings. Proc. Amer. Math. Soc. 102(4), 817–822 (1998)MathSciNetCrossRefGoogle Scholar
- 20.Waldschmidt, M.: Properiétés arithmétiques de fonctions de plusieurs variables II. Lecture Notes Math. 578, 108–135 (1977)CrossRefGoogle Scholar
- 21.Zariski, O., Samuel, P.: Commutative algebra, vol. II. Reprint of the 1960 edition. Graduate Texts in Mathematics, vol. 29, X+414. Springer, Heidelberg (1975)Google Scholar