The Integral Weight and Superposition Operators Between Bloch-Type Spaces

  • Renny J. Malavé-Malavé
  • Julio C. Ramos-FernándezEmail author


Using the notion of the integral weight, we characterize all entire functions that transform a Bloch-type space \({\mathcal {B}}^{\mu _1}\) into another space of the same kind \({\mathcal {B}}^{\mu _2}\) by superposition for very general weights \(\mu _1\) and \(\mu _2\), satisfying a growth condition.


Bloch-type spaces Superposition operator Entire function 

Mathematics Subject Classification

47H30 30D45 30H05 



The authors wish to express their sincere gratitude to the anonymous referee for his/her useful comments.


  1. 1.
    Álvarez, V., Márquez, M.A., Vukotić, D.: Superposition operators between the Bloch space and Bergman spaces. Arkiv Mat. 42(2), 205–216 (2004)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Attele, K.: Toeplitz and Hankel operators on Bergman spaces. Hokkaido Math. J. 21, 279–293 (1992)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Bierstedt, K., Summers, W.: Biduals of weighted Banach spaces of analytic functions. J. Aust. Math. Soc. (Ser. A) 54, 70–79 (1993)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Bierstedt, K., Bonet, J., Taskinen, J.: Associated weights and spaces of holomorphic functions. Studia Math. 127, 70–79 (1998)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Bonet, J., Vukotić, D.: Superposition operators between weighted Banach spaces of analytic functions of controlled growth. Monatshefte Math. 170(3–4), 311–323 (2013)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Boyd, C., Rueda, P.: Holomorphic superposition operators between Banach function spaces. Aust. Math. Soc. 96(2), 186–197 (2014)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Brown, L., Shields, A.L.: Multipliers and cyclic vectors in the Bloch space. Mich. Math. J. 38(1), 141–146 (1991)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Buckley, S.M., Vukotić, D.: Superposition Operators and the Order and Type of Entire Functions. Recent Advances in Operator-Related Function Theory Contemporary Mathematics, vol. 393, pp. 51–57. American Mathematical Society, Providence, RI (2006)CrossRefGoogle Scholar
  9. 9.
    Buckley, S.M., Vukotić, D.: Univalent interpolation in Besov space and superposition into Bergman spaces. Potential Anal. 29, 1–16 (2008)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Buckley, S.M., Fernández, J.L., Vukotić, D.: Superposition operators on Dirichlet type spaces. Rep. Univ. Jyväs. 83, 41–61 (2001)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Cámera, G., Giménez, J.: Nonlinear superposition operators acting on Bergman spaces. Compos. Math. 93, 23–35 (1994)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Castillo, R.E., Ramos Fernández, J.C., Salazar, M.: Bounded superposition operators between Bloch–Orlicz and \(\alpha \)-Bloch spaces. Appl. Math. Comput. 218, 3441–3450 (2011)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Girela, D., Márquez, M.A.: Superposition operators between \(Q_p\) spaces and Hardy spaces. J. Math. Anal. Appl. 364, 463–472 (2010)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Levin, B.Ya.: Lectures on Entire Functions, Translations of Mathematical Monographs. American Mathematical Society, Providence, RI (1996)CrossRefGoogle Scholar
  15. 15.
    Ramos Fernández, J.C.: Bounded superposition operators between weighted Banach spaces of analytic functions. Appl. Math. Comput. 219, 4942–4949 (2013)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Ramos-Fernández, J.C.: Composition operators on Bloch–Orlicz type spaces. Appl. Math. Comput. 217, 3392–3402 (2010)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Ramos-Fernández, J.C.: Logarithmic Bloch spaces and their weighted composition operators. Rend. Circ. Mat. Palermo 65(1), 159–174 (2016)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Stević, S.: On new Bloch-type spaces. Appl. Math. Comput. 215(2), 841–849 (2009)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Xiong, C.: Superposition operators between \(Q_p\) spaces and Bloch-type spaces. Complex Var. Theory Appl. 50(12), 935–938 (2005)MathSciNetzbMATHGoogle Scholar
  20. 20.
    Xu, W.: Superposition operators on Bloch-type spaces. Comput. Methods Funct. Theory 7(2), 501–507 (2007)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Ye, S.: Weighted composition operator on the logarithmic Bloch space. Bull. Korean Math. Soc. 47(3), 527–540 (2010)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Zhu, K.: Bloch type spaces of analytic functions. Rocky Mountain J. Math. 23, 1143–1177 (1993)MathSciNetCrossRefGoogle Scholar

Copyright information

© Malaysian Mathematical Sciences Society and Penerbit Universiti Sains Malaysia 2019

Authors and Affiliations

  1. 1.Departamento de MatemáticaUniversidad de OrienteCumanáVenezuela
  2. 2.Proyecto Curricular de Matemáticas, Facultad de Ciencias y EducaciónUniversidad Distrital Francisco José de CaldasBogotáColombia

Personalised recommendations