On the Rigidity of Generalized Quasi-Einstein Manifolds

  • M. Ahmad Mirshafeazadeh
  • B. BidabadEmail author


Here, it is shown a compact generalized quasi-Einstein or briefly a GQE manifold has the finite fundamental group. Next, under certain assumptions, a rigidity result shows that a compact GQE manifold is diffeomorphic to the standard n-sphere. As a corollary, if the scalar curvature is constant, then it is isometric to the standard n-sphere. Meanwhile, a trivialization criterion and existence of harmonic vector fields on a GQE are studied.


Einstein Generalized quasi-Einstein manifold Ricci soliton Fundamental group Harmonic 

AMS Subject Classification 2010

53C21 53C25 



The first author would like to thank the Institut de Mathématiques de Toulouse (ITM) where this work is partially carried out.


  1. 1.
    Anderson, M.: Scalar curvature, metric degenerations and the static vacuum Einstein equations on 3-manifolds I. Geom. Funct. Anal. 9, 855–967 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Agricola, I., Ferreira, A.C.: Einstein manifolds with skew torsion. Quart. J. Math. 65(2014), 717–741 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Ahmad Mirshafeazadeh, M., Bidabad, B.: On rigidity and scalar curvature of Einstein-type manifolds. Int. J. Mod. Phys. 15, 1850073 (2018). (16 pages)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Ahmad Mirshafeazadeh, M., Bidabad, B.: On generalized quasi-Einstein manifolds, Adv. Pure Appl. Math. (2018)
  5. 5.
    Ambrose, W.: A theorem of Myers. Duke Math. J. 24, 345–348 (1957)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Barros, A., Gomes, J.N.: A compact gradient generalized quasi-Einstein metric with constant scalar curvature. J. Math. Anal. Appl. 401, 702–705 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Barros, A., Ribeiro, E.: Characterizations and integral formulae for generalized \(m\)-quasi-Einstein metrics. Bull. Braz. Math. Soc. 45, 325–341 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Bidabad, B., Yar Ahmadi, M.: On complete Yamabe solitons. Adv. Geom. 18(1), 101–104 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Bochner, S.: Vector fields and Ricci curvature. Bull. Am. Math. Soc. 52, 776–797 (1946)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Bourguignon, J., Ezin, J.: Scalar curvature functions in a conformal class of metrics and conformal transformations. Trans. Am. Math. Soc. 301, 723–736 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Cao, H.D.: Recent progress on Ricci solitons. Adv. Lect. Math. 11, 1–38 (2009)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Catino, G., Mastrolia, P., Monticelli, D.D., Rigoli, M.: On the geometry of gradient Einstein-type manifolds. Pac. J. Math. 286(1), 39–67 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Hu, Z., Li, D., Zhai, S.: On generalized \(m\)-quasi-Einstein manifolds with constant Ricci curvatures. J. Math. Anal. Appl. 446(1), 843–851 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Huang, S.Y., Wang, L.F.: Classification results of quasi Einstein solitons. Kodai Math. J. 40(3), 638647 (2017)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Leandro, B., Pina, H.: Generalized quasi Yamabe gradient solitons. Differ. Geom. Appl. 49, 167–175 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Lopez, M.F., Rio, E.G.: A remark on compact Ricci solitons. Math. Ann. 340(4), 893–896 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Petersen, P., Wylie, W.: Rigidity of gradient Ricci solitons. Pac. J. Math. 241–2, 329–345 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Pigola, S., Rigoli, M., Rimoldi, M., Setti, A.: Ricci almost solitons. Ann. Sc. Norm. Super. Pisa Cl. Sci. 10, 757–799 (2011)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Shin, J.: On the classification of 4-dimensional \((m,\rho )\)-quasi-Einstein manifolds with harmonic Weyl curvature. Ann. Glob. Anal. Geom. 51(4), 379–399 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Suyama, Y., Tsukamoto, Y.: Riemannian manifolds admitting a certain confomal transformation group. J. Differ. Geom. 5, 415–426 (1971)CrossRefzbMATHGoogle Scholar
  21. 21.
    Yano, K.: Integral formulas in Riemannian geometry. Marcel Dekker, New York (1983)zbMATHGoogle Scholar
  22. 22.
    Yano, K.: On Riemannian manifolds with constant scalar curvature admitting a conformal transformation group. Proc. Nat. Acad. Sci. U.S.A. 55, 472–476 (1966)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Malaysian Mathematical Sciences Society and Penerbit Universiti Sains Malaysia 2019

Authors and Affiliations

  1. 1.Department of Mathematics and Computer SciencesAmirkabir University of Technology (Tehran Polytechnic)TehranIran
  2. 2.Institut de Mathématique de ToulouseUniversité Paul SabatierToulouseFrance
  3. 3.Department of MathematicsPayame Noor UniversityTehranIran

Personalised recommendations