Existence of Solutions to the Logarithmic Choquard Equations in High Dimensions

  • Qianqiao GuoEmail author
  • Jing Wu


In this paper, we consider the following logarithmic Choquard equation
$$\begin{aligned} - \,\Delta u + a(x)u + \lambda (\log |\cdot |*|u|{^2})u = b|u|^{p-2}u, ~~\ \text{ in }~\ {\mathbb {R}}^n, \end{aligned}$$
where \(n\ge 3, \lambda >0, 2<p<\frac{2n}{n-2}, a \in L^\infty ({\mathbb {R}}^n).\) For \(n=2, p>2\), this equation has been studied extensively. In this paper, we prove the existence of a mountain-pass solution and a ground state solution for \(n\ge 3\) by using the variational method.


Logarithmic Choquard equation Mountain-pass solution Ground state solution 

Mathematics Subject Classification

35A15 35J20 35Q40 



The first author is partially supported by the National Natural Science Foundation of China (Grant No. 11571268).


  1. 1.
    Alves, C.O., Gao, F., Squassina, M., Yang, M.: Singularly perturbed critical Choquard equations. J. Differ. Equ. 263, 3943–3988 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Battaglia, L., Schaftingen, J.V.: Ground states of the Choquard equations with a sign-changing self-interaction potential. Z. Angew. Math. Phys. 69, 16 (2018)CrossRefzbMATHGoogle Scholar
  3. 3.
    Bellazzini, J., Jeanjean, L., Luo, T.: Existence and instability of standing waves with prescribed norm for a class of Schrödinger–Poisson equations. Proc. Lond. Math. Soc. 107, 303–339 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Bonheure, D., Cingolani, S., Schaftingen, J.V.: The logarithmic Choquard equation: sharp asymptotics and nondegeneracy of the groundstate. J. Funct. Anal. 272, 5255–5281 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Cao, D., Li, H.: High energy solution of the Choquard equation. Discrete Contin. Dyn. Syst. 38, 3061–3070 (2018)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Cao, D., Peng, S., Wang, Q.: Pohozaev identities and their applications to nonlinear elliptic equations. Sci. Sin. Math. 46, 1649–1674 (2016). (in Chinese)CrossRefGoogle Scholar
  7. 7.
    Carlen, E., Loss, M.: Competing symmetries the logarithmic Hardy–Littlewood–Sobolev inequality and Onofris inequality on \(S^{2}\). Geom. Funct. Anal. 2, 90–104 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Cingolani, S., Weth, T.: On the planar Schrödinger–Poisson system. Ann. Inst. H. Poincaré Anal. Nonlinéaire 33, 169–197 (2016)CrossRefzbMATHGoogle Scholar
  9. 9.
    D’Aprile, T., Wei, J.: On bound states concentrating on spheres for the Maxwell–Schrödinger equation. SIAM J. Math. Anal. 37, 321–342 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Du, M., Weth, T.: Ground states and high energy solutions of the planar Schrödinger–Poisson system. Nonlinearity 30, 3492–3515 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    He, X., Zou, W.: Existence and concentration of ground states for Schrödinger–Poisson equations with critical growth. J. Math. Phys. 53, 023702 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Lieb, E.H.: Existence and uniqueness of the minimizing solution of Choquard’s nonlinear equation. Stud. Appl. Math. 57, 93–105 (1977)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Moroz, I.M., Penrose, R., Tod, P.: Spherically-symmetric solutions of the Schrödinger–Newton equations. Class. Quantum Gravity 15, 2733–2742 (1998)CrossRefzbMATHGoogle Scholar
  14. 14.
    Moroz, V., Schaftingen, J.V.: A guide to the Choquard equation. J. Fixed Point Theory Appl. 19, 773–813 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Pekar, S.I.: Untersuchungen über die Elektronentheorie der Kristalle, p. 2. Akademie Verlag, Berlin (1954)zbMATHGoogle Scholar
  16. 16.
    Pohozaev, S.I.: On the eigenfunctions of the equation \(\Delta u+\lambda f(u)=0\). Sov. Math. Dokl. 5, 1408–1411 (1965)Google Scholar
  17. 17.
    Ruiz, D.: The Schrödinger–Poisson equation under the effect of a nonlinear local term. J. Funct. Anal. 237, 655–674 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Stubbe, J.: Bound states of two-dimensional Schrödinger–Newton equations (2008). arXiv:0807.4059v1
  19. 19.
    Wang, Z., Zhou, H.: Positive solution for a nonlinear stationary Schrödinger–Poisson system in \({\mathbb{R}}^3\). Discrete Contin. Dyn. Syst. 18, 809–816 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Yang, M., Zhang, J., Zhang, Y.: Multi-peak solutions for nonlinear Choquard equation with a general nonlinearity. Commun. Pure Appl. Anal. 16, 493–512 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Zhang, X., Xia, J.: Semi-classical solutions for Schrödinger–Poisson equations with a critical frequency. J. Differ. Equ. 265, 2121–2170 (2018)CrossRefzbMATHGoogle Scholar
  22. 22.
    Zhao, L., Liu, H., Zhao, F.: Existence and concentration of solutions for the Schrödinger–Poisson equations with steep well potential. J. Differ. Equ. 255, 1–23 (2013)CrossRefzbMATHGoogle Scholar

Copyright information

© Malaysian Mathematical Sciences Society and Penerbit Universiti Sains Malaysia 2019

Authors and Affiliations

  1. 1.Department of Applied MathematicsNorthwestern Polytechnical UniversityXi’anChina

Personalised recommendations