Ground State Solutions for Fractional p-Kirchhoff Equation with Subcritical and Critical Exponential Growth

  • Ruichang PeiEmail author
  • Ying Zhang
  • Jihui Zhang


In this paper, we show the existence of nontrivial ground state solutions of fractional p-Kirchhoff problem
$$\begin{aligned} \left\{ \begin{array}{ll} m\left( \int _{{\mathbb {R}}^{2N}}\frac{|u(x)-u(y)|^{p}}{|x-y|^{N+sp}}\mathrm{d}x\mathrm{d}y\right) (-\Delta )_p^s u=f(x,u) ~&{}\text {in}~\Omega , \\ u=0 ~&{}\text {in}~{\mathbb {R}}^N{\setminus } \Omega , \end{array}\right. \end{aligned}$$
where \((-\Delta )_p^s\) is the fractional p-Laplacian operator with \(0<s<1<p<\infty \), \(\Omega \) is a bounded domain in \({\mathbb {R}}^N\) with smooth boundary, m is continuous function and the nonlinearity f(xu) has subcritical or critical exponential growth at \(\infty \). For the purpose of obtaining our existence results, we used minimax techniques combined with the fractional Moser–Trudinger inequality.


Fractional p-Laplacian Mountain pass theorem Moser–Trudinger inequality Subcritical and critical exponential growth 

Mathematics Subject Classification

34B27 35J60 35B05 


  1. 1.
    Ambrosetti, A., Rabinowitz, P.H.: Dual variational methods in critical point theory and applications. J. Funct. Anal. 14, 349–381 (1973)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Autuori, G., Fiscella, A., Pucci, P.: Stationary Kirchhoff problems involving a fractional elliptic operator and a critical nonlinearity. Nonlinear Anal. 125, 699–714 (2015)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Brasco, L., Parini, E.: The second eigenvalue of the fractional \(p\)-Laplacian, preprintGoogle Scholar
  4. 4.
    Bucur, C., Valdinoci, E.: Nonlocal Diffusion and Applications, Lecture Notes of the Unione Matematica Italiana Series, vol. 20. Springer, Berlin (2016)Google Scholar
  5. 5.
    Caffarelli, L.: Non-local diffusions, drifts and games. Nonlinear Parit. Differ. Equ. Abel Symp. 7, 37–52 (2012)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Costa, D.G., Miyagaki, O.H.: Nontrivial solutions for perturbations of the \(p\)-Laplacian on unbounded domains. J. Math. Anal. Appl. 193, 737–755 (1995)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Di Nezza, E., Palatucci, G., Valdinoci, E.: Hitchhiker’s guide to the fractional Sobolev spaces. Bull. Sci. Math. 136, 521–573 (2012)MathSciNetCrossRefGoogle Scholar
  8. 8.
    de Figueiredo, D.G., doÓ, J.M., Ruf, B.: Elliptic equations in \({\mathbb{R}}^2\) with nonlinearities in the critical growth range. Calc. Var. Partial Differ. Equ. 3, 139–153 (1995)CrossRefGoogle Scholar
  9. 9.
    Franzina, G., Palatucci, G.: Fractional \(p\)-eigenvalues. Riv. Mat. Univ. Parma 5, 373–386 (2014)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Ferrara, M., Molica Bisci, G., Zhang, B.L.: Existence of weak solutions for non-local fractional problems via Morse theory. Discrete Contin. Dyn. Syt. Ser. B 19, 2483–2499 (2014)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Fiscella, A., Molica Bisci, G., Servadei, R.: Bifurcation and multiplicity results for critical nonlocal fractional problems. Bull. Sci. Math 140, 14–35 (2016)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Fiscella, A., Valdinoci, E.: A critical Kirchhoff type problem involving a nonlocal operator. Nonlinear Anal. 94, 156–170 (2014)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Iannizzotto, A., Liu, S.B., Perera, K., Squassina, M.: Existence results for fractional \(p-\)Laplacian problems via Morse theory. Adv. Calc. Var. (2014).
  14. 14.
    Iannizzotto, A., Mosconi, S., Squassina, M.: Global Hölder regularity for the fractional \(p\)-Laplacian, preprint, arXiv:1411.2956
  15. 15.
    Iannizzotto, A., Squassina, M.: Weyl-type laws for fractional \(p\)-eigenvalue problems. Asymptot. Anal. 88, 233–245 (2014)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Lions, P.L.: The concentration-compactness principle in the calculus of variations. The limit case. \(I\). Rev. Mat. Iberoamericana 1, 145–201 (1985)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Martinazzi, L.: Fractional Adams-Moser-Trudinger type inequalities, preprint, arXiv: 1506.00489
  18. 18.
    Molica Bisci, G.: Sequence of weak solutions for fractional equations. Math. Res. Lett. 21, 241–253 (2014)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Molica Bisci, G., Rǎdulescu, D.V.: Ground state solutions of scalar field fractional Schrödinger equations. Calc. Var. Partial Differ. Equ. 54, 2985–3008 (2015)CrossRefGoogle Scholar
  20. 20.
    Molica Bisci, G., Rǎdulescu, D.V., Servadei, R.: Variational Methods for Nonlocal Fractional Problems, Encyclopedia of Mathematics and its Applications, 162. Cambridge University Press, Cambridge (2016)CrossRefGoogle Scholar
  21. 21.
    Nyamoradi, N., Zaidan, L.I.: Existence of solutions for degenerate Kirchhoff type problems with fractional \(p\)-Laplacian. Electron. J. Differ. Equ. 115, 1–13 (2017)MathSciNetzbMATHGoogle Scholar
  22. 22.
    Nyamoradi, N., Chung, N.T.: Existence of solutions to nonlocal Kirchhoff equations of elliptic type via genus theory. Electron. J. Differ. Equ. 86, 1–12 (2014)MathSciNetzbMATHGoogle Scholar
  23. 23.
    Nyamoradi, N., Teng, K.M.: Existence of solutions for a Kirchhoff type nonlocal operators of elliptic type. Commun. Pure Appl. Anal. 14, 361–371 (2015)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Nyamoradi, N.: Existence of three solutions for Kirchhoff nonlocal operators of elliptic type. Math. Commun. 18, 489–502 (2013)MathSciNetzbMATHGoogle Scholar
  25. 25.
    Parini, E., Ruf, B.: On the Moser-Trudinger inequality in fractional Sobolev-Slobodeckij spaces, preprintGoogle Scholar
  26. 26.
    Perera, K., Agarwal, R.P., O’Regan, D.: Morse theoretic aspects of \(p\)-Laplacian operators, volume 161 of Mathematical Surveys and Monographs. American mathematical Society, Providence, RI (2010)Google Scholar
  27. 27.
    Perera, K., Squassina, M., Yang, Y.: Bifurcation and multiplicity results for critical fractional \(p\)-Laplacian problems, preprint, arXiv: 1407.8061
  28. 28.
    Pucci, P., Xiang, M.Q., Zhang, B.: Existence and multiplicity of entire solutions for fractional \(p\)-Kirchhoff equations. Adv. Nonlinear Anal. 5, 27–55 (2016)MathSciNetzbMATHGoogle Scholar
  29. 29.
    Pucci, P., Xiang, M.Q., Zhang, B.: Multiple solutions for nonhomogeneous Schrödinger -Kirchhoff type equations involving the fractional \(p\)-Laplacian in \({\mathbb{R}}^N\). Calc. Var. Partial Differ. Equ. 54, 2785–2806 (2015)CrossRefGoogle Scholar
  30. 30.
    Servadei, R., Valdinoci, E.: Mountain Pass solutions for non-local elliptic operators. J. Math. Anal. Appl. 389, 887–898 (2012)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Servadei, R., Valdinoci, E.: Variational methods for non-local operators of elliptic type. Discret. Contin. Dyn. Syst. 33, 2105–2137 (2013)MathSciNetzbMATHGoogle Scholar
  32. 32.
    Xiang, M.Q., Zhang, B.L., Guo, X.Y.: Infinitely many solutions for a fractional Kirchhoff type problem via fountain theorem. Nonlinear Anal. 120, 299–313 (2015)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Xiang, M.Q., Zhang, B.L., Ferrara, M.: Existence of solutions for Kirchhoff type problem involving the non-local fractional \(p\)-Laplacian. J. Math. Anal. Appl. 424, 1021–1041 (2015)MathSciNetCrossRefGoogle Scholar
  34. 34.
    Xiang, M.Q., Zhang, B.L., Ferrara, M.: Multiplicity results for the non-homogeneous fractional \(p\)-Kirchhoff equations with concave-convex nonlinearities. Proc. Roy. Soc. A 471, 14pp (2015)MathSciNetCrossRefGoogle Scholar
  35. 35.
    Zhang, B.L., Ferrara, M.: Multiplicity of solutions for a class of superlinear non-local fractional equations. Complex Var. Ellip. Equ. 60, 583–595 (2015)MathSciNetCrossRefGoogle Scholar
  36. 36.
    Zhang, B.L., Molica Bisci, G., Servadei, R.: Superlinear nonlocal fractional problems with infinitely many solutions. Nonlinearity 28, 2247–2264 (2015)MathSciNetCrossRefGoogle Scholar

Copyright information

© Malaysian Mathematical Sciences Society and Penerbit Universiti Sains Malaysia 2018

Authors and Affiliations

  1. 1.School of Mathematics and StatisticsTianshui Normal UniversityTianshuiPeople’s Republic of China
  2. 2.School of Mathematical SciencesNanjing Normal UniversityNanjingPeople’s Republic of China

Personalised recommendations