On the Taylor Coefficients of a Subclass of Meromorphic Univalent Functions

  • Bappaditya BhowmikEmail author
  • Firdoshi Parveen


Let \({\mathcal {V}}_p(\lambda )\) be the collection of all functions f defined in the unit disc \({{\mathbb {D}}}\) having a simple pole at \(z=p\) where \(0<p<1\) and analytic in \({{\mathbb {D}}}\setminus \{p\}\) with \(f(0)=0=f'(0)-1\) and satisfying the differential inequality \(|(z/f(z))^2 f'(z)-1|< \lambda \) for \(z\in {{\mathbb {D}}}\), \(0<\lambda \le 1\). Each \(f\in {\mathcal {V}}_p(\lambda )\) has the following Taylor expansion:
$$\begin{aligned} f(z)=z+\sum _{n=2}^{\infty }a_n(f) z^n, \quad |z|<p. \end{aligned}$$
We recently conjectured that
$$\begin{aligned} |a_n(f)|\le \frac{1-(\lambda p^2)^n}{p^{n-1}(1-\lambda p^2)}\quad \text{ for }\quad n\ge 3, \end{aligned}$$
while investigating functions in the class \({\mathcal {V}}_p(\lambda )\). In the present article, we first obtain a representation formula for functions in this class. Using this, we prove the aforementioned conjecture for \(n=3,4,5\) whenever p belongs to certain subintervals of (0, 1). Also we determine non sharp bounds for \(|a_n(f)|,\,n\ge 3\) and for \(|a_{n+1}(f)-a_n(f)/p|,\,n\ge 2\).


Meromorphic functions Univalent functions Subordination Taylor coefficients 

Mathematics Subject Classification

30C45 30C50 30C55 30C80 


  1. 1.
    Aksentév, L.A.: Sufficient conditions for univalence of regular functions (Russian). Izv. Vysš. Učebn. Zaved. Mat. 1958(4), 3–7 (1958)MathSciNetGoogle Scholar
  2. 2.
    Bhowmik, B., Parveen, F.: On a subclass of meromorphic univalent functions. Complex Var. Elliptic Equ. 62(4), 494–510 (2017)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Bhowmik, B., Parveen, F.: Criteria for univalence, integral means and dirichlet integral for meromorphic functions. Bull. Belg. Math. Soc. Simon Stevin 24, 427–438 (2017)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Bhowmik, B., Parveen, F.: Sufficient conditions for univalence and study of a class of meromorphic univalent functions. Bull. Korean Math. Soc. 55(3), 999–1006 (2018)MathSciNetzbMATHGoogle Scholar
  5. 5.
    De Branges, L.: A proof of the Bieberbach conjecture. Acta Math. 154, 137–152 (1985)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Fournier, R., Ponnusamy, S.: A class of locally univalent functions defined by a differential inequality. Complex Var. Elliptic Equ. 52(1), 1–8 (2007)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Jenkins, J.A.: On a conjecture of Goodman concerning meromorphic univalent function. Mich. Math. J. 9, 25–27 (1962)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Obradović, M., Ponnusamy, S., Wirths, K.-J.: Geometric studies on the class \({\cal{U}}(\lambda )\). Bull. Malays. Math. Sci. Soc. 39, 1259–1284 (2016)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Obradović, M., Ponnusamy, S., Wirths, K.-J.: Logarithmic coefficients and a coefficient conjecture for univalent functions. Monatsh. Math. 185(3), 489–501 (2018)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Obradović, M., Ponnusamy, S.: Univalence and starlikeness of certain integral transforms defined by convolution of analytic functions. J. Math. Anal. Appl. 336, 758–767 (2007)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Ponnusamy, S., Wirths, K.-J.: Coefficient problems on the class \({\cal{U}}(\lambda )\). Probl. Anal. Issues Anal. 7 (25)(1), 87–103 (2018)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Rogosinski, W.: On the coefficients of subordinate functions. Proc. Lond. Math. Soc. 48, 48–82 (1943)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Ruscheweyh, St: Two remarks on bounded analytic functions. Serdica 11, 200–202 (1985)MathSciNetzbMATHGoogle Scholar

Copyright information

© Malaysian Mathematical Sciences Society and Penerbit Universiti Sains Malaysia 2018

Authors and Affiliations

  1. 1.Department of MathematicsIndian Institute of Technology KharagpurKharagpurIndia

Personalised recommendations