Evaluations of Euler-Type Sums of Weight \(\le 5\)



Let \(p,p_1,\ldots ,p_m\) be positive integers with \(p_1\le p_2\le \cdots \le p_m\) and \(x\in [-1,1)\), define the so-called Euler-type sums \({S_{{p_1}{p_2} \ldots {p_m},p}}\left( x \right) \), which are the infinite sums whose general term is a product of harmonic numbers of index n, a power of \(n^{-1}\) and variable \(x^n\), by
$$\begin{aligned} {S_{{p_1}{p_2} \ldots {p_m},p}}\left( x \right) : = \sum \limits _{n = 1}^{\infty } {\frac{{H_n^{\left( {{p_1}} \right) }H_n^{\left( {{p_2}} \right) } \ldots H_n^{\left( {{p_m}} \right) }}}{{{n^p}}}{x^n}}\quad (m\in \mathbb {N}:=\{1,2,3,\ldots \}), \end{aligned}$$
where \(H_n^{(p)}\) is defined by the generalized harmonic number. Extending earlier work about classical Euler sums, we prove that whenever \(p+p_1+\cdots +p_m \le 5\), then all sums \({S_{{p_1}{p_2} \ldots {p_m},p}}\left( 1/2\right) \) can be expressed as a rational linear combination of products of zeta values, polylogarithms and \(\log (2)\). The proof involves finding and solving linear equations which relate the different types of sums to each other.


Harmonic number Polylogarithm function Euler sum Riemann zeta function Multiple zeta value Multiple harmonic sum 

Mathematics Subject Classification

11M06 11M32 11M99 



We are indebted to the two anonymous referees of the journal for their helpful remarks.


  1. 1.
    Andrews, G.E., Askey, R., Roy, R.: Special Functions. Cambridge University Press, Cambridge (2000)zbMATHGoogle Scholar
  2. 2.
    Andrews, G.E., Uchimura, K.: Identities in combinatorics IV: differentiation and harmonic numbers. Util. Math. 28, 265–269 (1985)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Bailey, D.H., Borwein, J.M., Girgensohn, R.: Experimental evaluation of Euler sums. Exp. Math. 3(1), 17–30 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Batir, N.: On some combinatorial identities and harmonic sums. Int. J. Number Theory 13, 1695–1709 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Berndt, B.C.: Ramanujan’s Notebooks, Part I. Springer, New York (1985)CrossRefzbMATHGoogle Scholar
  6. 6.
    Bigotte, M., Jacob, G., Oussous, N.E., Petitot, M.: Lyndon words and shuffle algebras for generating the coloured multiple zeta values relations tables. Theoret. Comput. Sci. 273, 271–283 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Blümlein, J., Broadhurst, D.J., Vermaseren, J.A.M.: The multiple zeta value data mine. Comput. Phys. Commun. 181(3), 582–625 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Borwein, D., Borwein, J.M., Girgensohn, R.: Explicit evaluation of Euler sums. Proc. Edinb. Math. 38, 277–294 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Borwein, J.M., Bradley, D.M., Broadhurst, D.J.: Evaluations of k-fold Euler/Zagier sums: a compendium of results for arbitrary k. Electron. J. Combin. 4(2), 1–21 (1997)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Borwein, J.M., Bradley, D.M., Broadhurst, D.J., Lisonĕk, P.: Special values of multiple polylogarithms. Trans. Am. Math. Soc. 353(3), 907–941 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Borwein, J.M., Bradley, D.M.: Thirty-two goldbach variations. Int. J. Number Theory 2(1), 65–103 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Borwein, J.M., Girgensohn, R.: Evaluation of triple Euler sums. Electron. J. Combin. 3, 2–7 (1996)Google Scholar
  13. 13.
    Broadhurst, D.: Multiple Zeta values and modular forms in quantum field theory. In: Schneider, C., Blümlein, J. (eds.) Computer Algebra in Quantum Field Theory, pp. 33–73. Springer, Vienna (2013)Google Scholar
  14. 14.
    Comtet, L.: Advanced Combinatorics. D Reidel Publishing Company, Boston (1974)CrossRefzbMATHGoogle Scholar
  15. 15.
    Flajolet, P., Salvy, B.: Euler sums and contour integral representations. Exp. Math. 7(1), 15–35 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Hoffman, M.E.: Multiple harmonic series. Pac. J. Math. 152, 275–290 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Hoffman, M.E.: Harmonic-number summation identities, symmetric functions, and multiple zeta values. Ramanujan J. 42, 501–526 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Mezö, I.: Nonlinear Euler sums. Pac. J. Math. 272, 201–226 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Srivastava, H.M., Choi, J.: Zeta and q-Zeta Functions and Associated Series and Integrals. Elsevier Science Publishers, Amsterdam (2012)zbMATHGoogle Scholar
  20. 20.
    Wang, W., Lyu, Y.: Euler sums and Stirling sums. J. Number Theory 185, 160–193 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Xu, C., Cheng, J.: Some results on Euler sums. Funct. Approx. Comment. Math. 54(1), 25–37 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Xu, C., Yan, Y., Shi, Z.: Euler sums and integrals of polylogarithm functions. J. Number Theory 165, 84–108 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Xu, C., Li, Z.: Tornheim type series and nonlinear Euler sums. J. Number Theory 174, 40–67 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Xu, C., Yang, Y., Zhang, J.: Explicit evaluation of quadratic Euler sums. Int. J. Number Theory 13(3), 655–672 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Xu, C.: Multiple zeta values and Euler sums. J. Number Theory 177, 443–478 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Xu, C.: Explicit evaluation of harmonic sums. Commun. Korean Math. Soc. 33(1), 13–36 (2018)MathSciNetzbMATHGoogle Scholar
  27. 27.
    Xu, C., Cai, Y.: On harmonic numbers and nonlinear Euler sums. J. Math. Anal. Appl. 466, 1009–1042 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Xu, C.: Integrals of logarithmic functions and alternating multiple zeta values. Math. Slovaca. accepted (2018). arXiv:1701.00385
  29. 29.
    Xu, C.: Identities for the multiple zeta (star) values. Results Math. 73(3), 1–22 (2018)MathSciNetzbMATHGoogle Scholar
  30. 30.
    Zagier, D.: Evaluation of the multiple zeta values \(\zeta (2, 2,3,2, 2)\). Ann. Math. 2(2), 977–1000 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Zhao, J.: Multiple Zeta Functions, Multiple Polylogarithms and Their Special Values. World Scientific, Singapore (2015)zbMATHGoogle Scholar
  32. 32.
    Zlobin, S.A.: Special values of generalized polylogarithms. J. Math. Sci. (N. Y.) 182(4), 484–504 (2012)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Malaysian Mathematical Sciences Society and Penerbit Universiti Sains Malaysia 2019

Authors and Affiliations

  1. 1.School of Mathematical SciencesXiamen UniversityXiamenPeople’s Republic of China

Personalised recommendations