Differential Game of Optimal Pursuit for an Infinite System of Differential Equations

  • Gafurjan Ibragimov
  • Idham Arif AliasEmail author
  • Usman Waziri
  • Abbas Badakaya Ja’afaru


We study an optimal pursuit differential game problem in the Hilbert space \(l_{r+1}^2\). The game is described by an infinite system of the first-order differential equations whose coefficients are negative. The control functions of players are subjected to integral constraints. If the state of the system coincides with the origin of the space \(l_{r+1}^2\), then game is considered completed. We obtain an equation to find the optimal pursuit time. Moreover, we construct the optimal strategies for players.


Differential game Infinite system Pursuer Evader Hilbert space Integral constraint Optimal strategy 

Mathematics Subject Classification

Primary 91A23 Secondary 49N75 



The present research was partially supported by the National Fundamental Research Grant Scheme FRGS of Malaysia, 01-01-16-1840FR and 01-01-17-1921FR.


  1. 1.
    Alias, I.A., Ibragimov, G., Rakhmanov, A.: Evasion differential game of infinitely many evaders from infinitely many pursuers in Hilbert space. Dyn. Games Appl. 7, 347–359 (2017). MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Avdonin, S.A., Ivanov, S.A.: Families of Exponentials: The Method of Moments in Controllability Problems for Distributed Parameter Systems. Cambridge UniversityPress, Cambridge (1995)zbMATHGoogle Scholar
  3. 3.
    Azimov, A.Y.: Linear pursuit differential game with integral constraints on the control. Differ. Equ. 11, 1283–1289 (1975)zbMATHGoogle Scholar
  4. 4.
    Butkovskiy, A.G.: Theory of Optimal Control of Distributed Parameter Systems. Elsevier, New York (1969)zbMATHGoogle Scholar
  5. 5.
    Chernous’ko, F.L.: Bounded controls in distributed-parameter systems. J. Appl. Math. Mech. 56(5), 707–723 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Daletskii, Y.L., Krein, M.G.: Stability of Solutions of Differential Equations in Banach Space. Translations of Mathematical Monographs, vol. 43. Amer. Math. Soc., Providence, RI (1974)Google Scholar
  7. 7.
    Guseinov, K.G., Neznakhin, A.A., Ushakov, V.N.: Approximate construction of attainability sets of control systems with integral constraints on the controls. J. Appl. Math. Mech. 63(4), 557–567 (1999)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Ibragimov, G.I.: A problem of optimal pursuit in systems with distributed parameters. J. Appl. Math. Mech. 66(5), 719–724 (2002). (Prikladnaya Matematika i Mekhanika 66(5), 753–759, 2002)Google Scholar
  9. 9.
    Ibragimov, G.I.: The optimal pursuit problem reduced to an infinite system of differential equations. J. Appl. Math. Mech. 77(5), 470–476 (2013). MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Ibragimov, G.I., Rasid, N.A., Kuchkarov, A.S., Ismail, F.: Multi pursuer differential game of optimal approach with integral constraints on controls of players. Taiwan. J. Math. 19(3), 963–976 (2015). MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Ibragimov, G.I., Allahabi, F., Kuchkarov, A.: A pursuit problem in an infinite system of second-order differential equations. Ukr. Math. J. 65(8), 1203–1216 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Ibragimov, G.I., Ja’afaru, A.B.: On control problem described by infinite system of first order differential equations. Aus. J. Basic Appl. Sci. 5(10), 736–742 (2011)Google Scholar
  13. 13.
    Lions, J.-L.: Contrôle optimal de systemes gouvernés par des équations aux dérivées partielles. Dunod, Paris (1968)zbMATHGoogle Scholar
  14. 14.
    Nikolskii, M.S.: The direct method in linear differential games with integral constraints. Control. Syst. IM IK SO AN SSSR 69(2), 49–59 (1969)MathSciNetGoogle Scholar
  15. 15.
    Osipov, Y.S.: Theory of differential games in systems with distributed parameters. Dokl. Akad. Nauk SSSR 223(6), 1314–1317 (1975)MathSciNetGoogle Scholar
  16. 16.
    Salimi, M.I., Ibragimov, G.I., Siegmund, S., Sharifi, S.: On a fixed duration pursuit differential game with geometric and integral constraints. Dyn. Games Appl. 6(2), 409–425 (2016). MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Samatov, B.T.: Problems of group pursuit with integral constraints on controls of the players I. Cybern. Syst. Anal. 49(5), 756–767 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Satimov, N.Y., Tukhtasinov, M.: On some game problems for first-order controlled evolution equations. Differ. Equ. 41(8), 1169–1177 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Satimov, N.Y., Tukhtasinov, M.: Game problems on a fixed interval in controlled first-order evolution equations. Math. Notes 80(3–4), 578–589 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Satimov, N.Y., Tukhtasinov, M.: On game problems for second-order evolution equations. Russ. Math. (Iz VUZ) 51(1), 49–57 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Tukhtasinov, M.: Some problems in the theory of differential pursuit games in systems with distributed parameters. J. Appl. Math. Mech. 59(6), 935–940 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Tukhtasinov, M., Mamatov, M.S.: On pursuit problems in controlled distributed systems. Math. Notes 84(1–2), 256–262 (2008)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Malaysian Mathematical Sciences Society and Penerbit Universiti Sains Malaysia 2017

Authors and Affiliations

  1. 1.Department of Mathematics, Institute for Mathematical ResearchUniversiti Putra MalaysiaSerdangMalaysia
  2. 2.Department of MathematicsUniversiti Putra MalaysiaSerdangMalaysia
  3. 3.Department of MathematicsBayero University KanoKanoNigeria

Personalised recommendations