Oscillation for Fractional Partial Differential Equations

  • Yong Zhou
  • Bashir Ahmad
  • Fulai Chen
  • Ahmed Alsaedi


In this paper, we develop the sufficient criteria for the oscillation of all solutions to the following fractional functional partial differential equation involving Riemann–Liouville fractional derivative equipped with initial and Neumann, Dirichlet and Robin boundary conditions:
$$\begin{aligned} \displaystyle \frac{\partial ^{\alpha } u(x, t)}{\partial t^{\alpha }}=C(t)\triangle u+\displaystyle \sum \limits _{i=1}^{n}P_i(x)u(x, t-\sigma _i)+R(x, t), \end{aligned}$$
where \(0<\alpha <1\), \((x, t)\in \Omega \times (0, \infty )\), \(\Omega \) is a bounded domain in Euclidean \(n-\)dimensional space \(\mathbb {R}^n\) with a piecewise smooth boundary \(\partial \Omega \); \(C\in C((0,\infty ),(-\infty ,0]),\)\(\triangle \) is the Laplacian in \(\mathbb {R}^\texttt {n}, P_i\in C(\Omega ,[0,\infty )), R(x,t)\in C(G, (-\infty ,\infty )), \sigma _i\in [0,\infty ), i=1,2,\ldots ,n\).


Oscillation Fractional partial differential equations Delay Laplace transform Riemann–Liouville derivative 

Mathematics Subject Classification

26A33 34K15 35K99 44A10 


  1. 1.
    Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999)zbMATHGoogle Scholar
  2. 2.
    Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier Science B.V, Amsterdam (2006)zbMATHGoogle Scholar
  3. 3.
    Diethelm, K.: The Analysis of Fractional Differential Equations. Springer, Berlin (2010)CrossRefzbMATHGoogle Scholar
  4. 4.
    Zhou, Y.: Basic Theory of Fractional Differential Equations. World Scientific, Singapore (2014)CrossRefzbMATHGoogle Scholar
  5. 5.
    Zhou, Y.: Fractional Evolution Equations and Inclusions: Analysis and Control. Academic Press, Cambridge (2016)zbMATHGoogle Scholar
  6. 6.
    Zhou, Y., Peng, L.: On the time-fractional Navier–Stokes equations. Comput. Math. Appl. 73(6), 874–891 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Zhou, Y., Peng, L.: Weak solution of the time-fractional Navier–Stokes equations and optimal control. Comput. Math. Appl. 73(6), 1016–1027 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Zhou, Y., Lu, Z.: Existence and multiplicity results of homoclinic solutions for fractional Hamiltonian systems. Comput. Math. Appl. 73(6), 1325–1345 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Zhou, Y., Vijayakumar, V., Murugesu, R.: Controllability for fractional evolution inclusions without compactness. Evol. Equ. Control Theory 4, 507–524 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Ladde, G.S., Lakshmikantham, V., Zhang, B.G.: Oscillation Theory of Differential Equations with Deviation Arguments. Dekker, New York (1989)Google Scholar
  11. 11.
    Györi, I., Ladas, G.: Oscillation Theory of Delay Differential Equations with Applications. Clarendon, Oxford (1991)zbMATHGoogle Scholar
  12. 12.
    Gopalsamy, K.: Stability and Oscillation in Delay Differential Equations of Population Dynamics. Kluwer Academic, Boston (1992)CrossRefzbMATHGoogle Scholar
  13. 13.
    Erbe, L.H., Kong, Q.K., Zhang, B.G.: Oscillation Theory for Functional Differential Equations. Marcel Dekker Inc., New York (1995)zbMATHGoogle Scholar
  14. 14.
    Agarwal, R.P., Bohner, M., Li, W.T.: Nonoscillation and Oscillation: Theory for Functional Differential Equations. Marcel Dekker Inc., New York (2004)CrossRefzbMATHGoogle Scholar
  15. 15.
    Grace, S., Agarwal, R., Wong, P., et al.: On the oscillation of fractional differential equations. Fract. Calc. Appl. Anal. 15, 222–231 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Bolat, Y.: On the oscillation of fractional-order delay differential equations with constant coefficients. Commun. Nonlinear Sci. Numer. Simul. 19, 3988–3993 (2014)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Duan, J.S., Wang, Z., Fu, S.Z.: The zeros of the solutions of the fractional oscillation equation. Fract. Calc. Appl. Anal. 17, 10–22 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Harikrishnan, S., Prakash, P., Nieto, J.J.: Forced oscillation of solutions of a nonlinear fractional partial differential equation. Appl. Math. Comput. 254, 14–19 (2015)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Prakash, P., Harikrishnan, S., Nieto, J.J., Kim, J.-H.: Oscillation of a time fractional partial differential equation. Electron. J. Qual. Theory Differ. Equ. 15, 10 (2014)MathSciNetzbMATHGoogle Scholar
  20. 20.
    Prakash, P., Harikrishnan, S., Benchohra, M.: Oscillation of certain nonlinear fractional partial differential equation with damping term. Appl. Math. Lett. 43, 72–79 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Li, W.N.: Oscillation of solutions for certain fractional partial differential equations. Adv. Differ. Equ. 2016, 16 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Li, W.N.: On the forced oscillation of certain fractional partial differential equations. Appl. Math. Lett. 50, 5–9 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Li, W.N.: Forced oscillation criteria for a class of fractional partial differential equations with damping term. Math. Probl. Eng. (2015), Art. ID 410904, p 6Google Scholar
  24. 24.
    Li, W.N., Sheng, W.: Oscillation properties for solutions of a kind of partial fractional differential equations with damping term. J. Nonlinear Sci. Appl. 9, 1600–1608 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Györi, I., Ladas, G.: Oscillation theory of delay differential equations via Laplace transform. Can. Math. Bull. 33, 323–326 (1990)CrossRefzbMATHGoogle Scholar
  26. 26.
    Grammatikopoulos, K., Tsvetkov, D.P.: An extension of the characterization of oscillations to arbitrary functional differential equations via the Laplace transform. J. Math. Anal. Appl. 223, 418–428 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Kolmogorov, A.N., Fomin, S.V.: Fundamentals of the Theory of Functions and Functional Analysis. Nauka, Moscow (1968)Google Scholar
  28. 28.
    Vladimirov, V.S.: Equations of Mathematical Physics. Nauka, Moscow (1981)Google Scholar
  29. 29.
    Henry, D.: Geometric Theory of Semilinear Parabolic Partial Differential Equations. Springer, Berlin (1989)Google Scholar

Copyright information

© Malaysian Mathematical Sciences Society and Penerbit Universiti Sains Malaysia 2017

Authors and Affiliations

  • Yong Zhou
    • 1
    • 2
  • Bashir Ahmad
    • 2
  • Fulai Chen
    • 3
  • Ahmed Alsaedi
    • 2
  1. 1.Faculty of Mathematics and Computational ScienceXiangtan UniversityXiangtanPeople’s Republic of China
  2. 2.Nonlinear Analysis and Applied Mathematics (NAAM) Research Group, Faculty of ScienceKing Abdulaziz UniversityJeddahSaudi Arabia
  3. 3.Department of MathematicsXiangnan UniversityChenzhouPeople’s Republic of China

Personalised recommendations