Advertisement

Weighted Composition Operators from Analytic Besov Spaces into the Bloch Space

  • Qinghua Hu
  • Songxiao LiEmail author
  • Hasi Wulan
Article
  • 139 Downloads

Abstract

In this paper, we give some new essential norm estimates of weighted composition operators \(uC_{\varphi }\) from analytic Besov spaces into the Bloch space, where u is a function analytic on the unit disk \(\mathbb {D}\) and \(\varphi \) is an analytic self-map of \(\mathbb {D}\). Moreover, new characterizations for the boundedness, compactness and essential norm of weighted composition operators \(uC_{\varphi }\) are obtained by the nth power of the symbol \(\varphi \) and the Volterra operators \(I_u\) and \(J_u\).

Keywords

Besov space Bloch space Essential norm Weighted composition operator 

Mathematics Subject Classification

30H30 47B33 

References

  1. 1.
    Colonna, F.: New criteria for boundedness and compactness of weighted composition operators mapping into the Bloch space. Cent. Eur. J. Math. 11, 55–73 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Colonna, F., Li, S.: Weighted composition operators from the Besov spaces to the Bloch spaces. Bull. Malays. Math. Sci. Soc. 36, 1027–1039 (2013)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Cowen, C., Maccluer, B.: Composition Operators on Spaces of Analytic Functions. CRC Press, Boca Raton (1995)zbMATHGoogle Scholar
  4. 4.
    Hyvärinen, O., Kemppainen, M., Lindström, M., Rautio, A., Saukko, E.: The essential norm of weighted composition operators on weighted banach spaces of analytic functions. Integral Equ. Oper. Theory 72, 151–157 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Hyvärinen, O., Lindström, M.: Estimates of essential norm of weighted composition operators between Bloch-type spaces. J. Math. Anal. Appl. 393, 38–44 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Li, S., Stević, S.: Weighted composition operators from Bergman-type spaces into Bloch spaces. Proc. Indian Acad. Sci. Math. Sci. 117, 371–385 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Li, S., Stević, S.: Weighted composition operators from Zygmund spaces into Bloch spaces. Appl. Math. Comput. 206, 825–831 (2008)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Lou, Z.: Composition operators on Bloch type spaces. Analysis 23, 81–95 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Maccluer, B., Zhao, R.: Essential norm of weighted composition operators between Bloch-type spaces. Rocky Mt. J. Math. 33, 1437–1458 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Madigan, K., Matheson, A.: Compact composition operators on the Bloch space. Trans. Am. Math. Soc. 347, 2679–2687 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Manhas, J., Zhao, R.: New estimates of essential norms of weighted composition operators between Bloch type spaces. J. Math. Anal. Appl. 389, 32–47 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Montes-Rodriguez, A.: Weighed composition operators on weighted Banach spaces of analytic functions. J. Lond. Math. Soc. 61, 872–884 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Ohno, S., Zhao, R.: Weighted composition operators on the Bloch space. Bull. Aust. Math. Soc. 63, 177–185 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Tjani, M.: Compact composition operators on some Möbius invariant Banach space. PhD Dissertation, Michigan State University (1996)Google Scholar
  15. 15.
    Wu, Y., Wulan, H.: Products of differentiation and composition operators on the Bloch space. Collect. Math. 63, 93–107 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Wulan, H., Zheng, D., Zhu, K.: Compact composition operators on BMOA and the Bloch space. Proc. Am. Math. Soc. 137, 3861–3868 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Zhao, R.: Essential norms of composition operators between Bloch type spaces. Proc. Am. Math. Soc. 138, 2537–2546 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Zhu, K.: Operator Theory in Function Spaces. Marcel Dekker, New York (1990)zbMATHGoogle Scholar

Copyright information

© Malaysian Mathematical Sciences Society and Penerbit Universiti Sains Malaysia 2017

Authors and Affiliations

  1. 1.College of Mathematics Physics and Information EngineeringJiaxing UniversityJiaxingPeople’s Republic of China
  2. 2.Institute of Systems EngineeringMacau University of Science and TechnologyTaipaMacau
  3. 3.Department of MathematicsShantou UniversityShantouPeople’s Republic of China

Personalised recommendations