Generalized Derivations of Multiplicative n-Ary Hom-\(\Omega \) Color Algebras

  • P. D. Beites
  • Ivan KaygorodovEmail author
  • Yury Popov


We generalize the results of Leger and Luks, Zhang R. and Zhang Y.; Chen, Ma, Ni, Niu, Zhou and Fan; Kaygorodov and Popov about generalized derivations of color n-ary algebras to the case of n-ary Hom-\(\Omega \) color algebras. Particularly, we prove some properties of generalized derivations of multiplicative n-ary Hom-\(\Omega \) color algebras. Moreover, we prove that the quasiderivation algebra of any multiplicative n-ary Hom-\(\Omega \) color algebra can be embedded into the derivation algebra of a larger multiplicative n-ary Hom-\(\Omega \) color algebra.


Generalized derivation Color algebra Hom-algebra Hom–Lie superalgebra n-ary algebra 



We are grateful to the anonymous referees for some constructive comments about the first version of the paper.


  1. 1.
    Beites, P.D., Nicolás, A.P.: An associative triple system of the second kind. Commun. Algebra 44(11), 5027–5043 (2016)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Beites, P.D., Pozhidaev, A.: On simple Filippov superalgebras of type A(n, n). Asian–Eur. J. Math. 1(4), 469–487 (2008)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Cantarini, N., Kac, V.: Classification of simple linearly compact \(n\)-lie superalgebras. Commun. Math. Phys. 298(3), 833–853 (2010)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Chen, L., Ma, Y., Ni, L.: Generalized derivations of lie color algebras. Result Math. 63(3–4), 923–936 (2013)MathSciNetzbMATHGoogle Scholar
  5. 5.
    de la Concepción, D., Makhlouf, A.: Variety of Hom-Sabinin algebras and related algebra subclasses. arXiv:1512.04173
  6. 6.
    Dzhumadil’daev, A. S.: Cohomologies of colour Leibniz algebras: pre-simplicial approach. In: Lie Theory and Its Applications in Physics, III (Clausthal, 1999). World Sci. Publ. River Edge NJ 124–136 (2000)Google Scholar
  7. 7.
    Kaygorodov, I.: \(\delta \)-Derivations of simple finite-dimensional Jordan superalgebras. Algebra Log. 46(5), 318–329 (2007)MathSciNetGoogle Scholar
  8. 8.
    Kaygorodov, I.: \(\delta \)-Derivations of classical Lie superalgebras. Sib. Math. J. 50(3), 434–449 (2009)MathSciNetGoogle Scholar
  9. 9.
    Kaygorodov, I.: \(\delta \)-Superderivations of simple finite-dimensional Jordan and Lie superalgebras. Algebra Log. 49(2), 130–144 (2010)MathSciNetGoogle Scholar
  10. 10.
    Kaygorodov, I.: \(\delta \)-Superderivations of semisimple finite-dimensional Jordan superalgebras. Math. Note 91(2), 187–197 (2012)MathSciNetGoogle Scholar
  11. 11.
    Kaygorodov, I.: \(\delta \)-Derivations of \(n\)-ary algebras. Izv. Math. 76(5), 1150–1162 (2012)MathSciNetGoogle Scholar
  12. 12.
    Kaygorodov, I.: \((n+1)\)-Ary derivations of simple \(n\)-ary algebras. Algebra Log. 50(5), 470–471 (2011)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Kaygorodov, I.: \((n+1)\)-Ary derivations of simple Malcev algebras. St. Peterburg Math. J. 23(4), 575–585 (2014)MathSciNetGoogle Scholar
  14. 14.
    Kaygorodov, I.: \((n+1)\)-Ary derivations of semisimple Filippov algebras. Math. Note 96(2), 208–216 (2014)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Kaygorodov, I., Okhapkina, E.: \(\delta \)-Derivations of semisimple finite-dimensional structurable algebras. J. Algebra Appl. 13(4), 1350130 (2014)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Kaygorodov, I., Popov, Yu.: A characterization of nilpotent nonassociative algebras by invertible Leibniz-derivations. J. Algebra 456, 323–347 (2016)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Kaygorodov, I., Popov, Yu.: Generalized derivations of (color) \(n\)-ary algebras. Linear Multilinear Algebra 64(6), 1086–1106 (2016)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Kaygorodov, I., Popov, Yu.: Commentary to: generalized derivations of Lie triple systems. Open Math. 14, 543–544 (2016)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Komatsu, H., Nakajima, A.: Generalized derivations of associative algebras. Quaest. Math. 26(2), 213–235 (2003)MathSciNetzbMATHGoogle Scholar
  20. 20.
    Leger, G., Luks, E.: Generalized derivations of Lie algebras. J. Algebra 228(1), 165–203 (2000)MathSciNetzbMATHGoogle Scholar
  21. 21.
    Zhang, R., Zhang, Y.: Generalized derivations of Lie superalgebras. Commun. Algebra 38(10), 3737–3751 (2010)MathSciNetzbMATHGoogle Scholar
  22. 22.
    Zhang, T.: Cohomology and deformations of 3-Lie colour algebras. Linear Multilinear Algebra 63(4), 651–671 (2015)MathSciNetzbMATHGoogle Scholar
  23. 23.
    Zhelyabin, V., Kaygorodov, I.: On \(\delta \)-superderivations of simple superalgebras of Jordan brackets. St. Petersburg Math. J. 23(4), 665–677 (2012)MathSciNetzbMATHGoogle Scholar
  24. 24.
    Zhou, J., Chen, L., Ma, Y.: Generalized derivations of Lie triple systems. Open Math. 14, 260–271 (2016)MathSciNetzbMATHGoogle Scholar
  25. 25.
    Zhou, J., Chen, L., Ma, Y.: Generalized derivations of Hom-Lie triple systems. Bull. Malays. Math. Sci. Soc. (2016). doi: 10.1007/s40840-016-0334-2 zbMATHGoogle Scholar
  26. 26.
    Zhou, J., Niu, Y., Chen, L.: Generalized derivations of Hom–Lie algebras (Chinese). Acta Math. Sinica (Chin. Ser.) 58(4), 551–558 (2015)MathSciNetzbMATHGoogle Scholar
  27. 27.
    Zhou, J., Fan, G.: Generalized derivations of n-Hom Lie superalgebras. Math. Aeterna 6(4), 533–550 (2016)Google Scholar
  28. 28.
    Zhou, J., Fan, G.: Generalized derivations of Hom–Lie color algebra (Chinese). Pure Math. 6(3), 182–189 (2016)Google Scholar
  29. 29.
    Zusmanovich, P.: On \(\delta \)-derivations of Lie algebras and superalgebras. J. Algebra 324(12), 3470–3486 (2010)MathSciNetzbMATHGoogle Scholar

Copyright information

© Malaysian Mathematical Sciences Society and Penerbit Universiti Sains Malaysia 2017

Authors and Affiliations

  1. 1.Universidade da Beira InteriorCovilhãPortugal
  2. 2.CMCCUniversidade Federal do ABCSanto AndréBrazil
  3. 3.Universidade Estadual de Campinas, IMECC-UNICAMPCampinasBrazil
  4. 4.Novosibirsk State UniversityNovosibirskRussia

Personalised recommendations