Advertisement

Legendre Curves on Generalized Paracontact Metric Manifolds

  • Cornelia-Livia BejanEmail author
  • Şemsi Eken Meriç
  • Erol Kılıç
Article
  • 314 Downloads

Abstract

Two different notions of almost paracontact structures (which are compatible or anti-compatible with the metric), well known in the literature, are unified and generalized here. Several formulas of paraholomorphic maps are established, and a result of Lichnerowicz type is obtained. The connection transformations which have the same system of paracontact-planar Legendre curves are characterized. Conformal changes of metrics which preserve geodesics (resp. paracontact-planar Legendre curves) are studied.

Keywords

Paracontact structures on manifolds Linear connection Geodesics Planar curve Harmonic map 

Mathematics Subject Classification

53C15 53B05 53C22 53C43 

Notes

Acknowledgements

Cornelia-Livia Bejan was supported by the Scientific and Technical Research Council of Turkey (TUBITAK). As a visiting Professor in İnönü University, Malatya, Cornelia-Livia Bejan thanks members of Math. Department for their kind hospitality. The authors thank the referee for careful reading of the manuscript.

References

  1. 1.
    Ahmad, M., Özgür, C.: Hypersurfaces of an almost r-paracontact Riemannian manifold endowed with a semi-symmetric non-metric connection. Results Math. 55(1), 1–10 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Baikoussis, C., Blair, D.E.: On Legendre curve in contact 3-manifolds. Geom. Dedicata 49, 135–142 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Bejan, C.L.: A classification of the almost para-Hermitian manifolds. In: Proceedings of the Conference on Diff. Geom. and Appl., Dubrovnik 1988, Novi Sad, 23–27 (1989)Google Scholar
  4. 4.
    Bejan, C.L., Benyounes, M.: Harmonic maps between almost para-Hermitian manifolds. In: Szenthe, J. (ed.) New Developments in Differential Geometry, pp. 67–76. Proc. Conf. Budapest. Kluwer. (1996)Google Scholar
  5. 5.
    Bejan, C.L., Crasmareanu, M.: Second order parallel tensors and Ricci solitons in 3-dimensional normal paracontact geometry. Ann. Glob. Anal. Geom. 46, 117–127 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Cruceanu, V., Fortuny, P., Gadea, P.M.: A survey on paracomplex geometry. Rocky Mt. J. Math. 26(1), 83–115 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Doğan, S., Karadağ, M.: Slant submanifolds of an almost hyperbolic contact metric manifolds. J. Math. Syst. Sci. 4, 285–288 (2014)Google Scholar
  8. 8.
    Druta-Romaniuc, S.-L.: General natural Riemannian almost product and para-Hermitian structure on tangent bundles. Taiwan. J. Math. 16, 497–510 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Gündüzalp, Y., Şahin, B.: Para-contact para-complex semi-Riemannian submersions. Bull. Malays. Math. Sci. Soc. 2, 139–152 (2014)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Ianus, S., Pastore, A.M.: Harmonic maps and F-structures with parallelizable kernel. In: Szenthe, J. (ed.) New Developments in Differential Geometry, pp. 143–154. Proc. Conf. Budapest. Kluwer. (1999)Google Scholar
  11. 11.
    Ivanov, S., Vassilev, D., Zamkovoy, S.: Conformal paracontact curvature and the local flatness theorem. Geom. Dedicata 144, 79–100 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Kaneyuki, S., Kozai, M.: Paracomplex structures and affine symmetric spaces. Tokyo J. Math. 8, 301–318 (1985)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Kaneyuki, S., Williams, F.L.: Almost paracontact and parahodge structures on manifolds. Nagoya Math. J. 99, 173–187 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Mikeš, J., et al.: Differential Geometry of Special Mappings. Palacky University, Olomouc (2015)zbMATHGoogle Scholar
  15. 15.
    Molina, V.M.: Paracontact metric manifolds without a contact metric counterpart. Taiwan. J. Math. 19, 175–191 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Olszak, Z.: The Schouten–van Kampen affine connection adapted an almost (para) contact metric structure. Publ. De L’inst. Math. 94, 31–42 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Sato, I.: On a Structure Similar to the Almost Contact Structure I / II, Tensor N.S. 30/31, pp. 199–205 / 219–224 (1976/1977)Google Scholar
  18. 18.
    Sato, I.: On a Riemannian manifold admitting a certain vector field. Kodai Math. Sem. Rep. 29, 250–260 (1978)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Sinyukov, N.S.: Geodesic Mappings of Riemannian Spaces. Nauka, Moscow (1979)zbMATHGoogle Scholar
  20. 20.
    Tripathi, M.M., Kılıç, E., Perktaş, S.Y., Keleş, S.: Indefinite almost paracontact metric manifolds. Int. J. Math. Math. Sci. 2010, 846195 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Yano, K., Kon, M.: Structures on Manifolds. World Scientific, Singapore (1984)zbMATHGoogle Scholar

Copyright information

© Malaysian Mathematical Sciences Society and Penerbit Universiti Sains Malaysia 2017

Authors and Affiliations

  • Cornelia-Livia Bejan
    • 1
    • 2
    Email author
  • Şemsi Eken Meriç
    • 3
  • Erol Kılıç
    • 4
  1. 1.Department of Mathematics“Gh. Asachi” Technical UniversityIasiRomania
  2. 2.Seminarul MatematicUniversitatea “Alexandru Ioan Cuza”IasiRomania
  3. 3.Department of MathematicsMersin UniversityMersinTurkey
  4. 4.Department of Mathematicsİnönü UniversityMalatyaTurkey

Personalised recommendations