Spectra of Subdivision-Vertex Join and Subdivision-Edge Join of Two Graphs

  • Xiaogang LiuEmail author
  • Zuhe Zhang


The subdivision graph \({\mathcal {S}}(G)\) of a graph G is the graph obtained by inserting a new vertex into every edge of G. Let \(G_1\) and \(G_2\) be two vertex disjoint graphs. The subdivision-vertex join of \(G_1\) and \(G_2\), denoted by \(G_1{\dot{\vee }}G_2\), is the graph obtained from \({\mathcal {S}}(G_1)\) and \(G_2\) by joining every vertex of \(V(G_1)\) with every vertex of \(V(G_2)\). The subdivision-edge join of \(G_1\) and \(G_2\), denoted by \(G_1{\underline{\vee }}G_2\), is the graph obtained from \({\mathcal {S}}(G_1)\) and \(G_2\) by joining every vertex of \(I(G_1)\) with every vertex of \(V(G_2)\), where \(I(G_1)\) is the set of inserted vertices of \({\mathcal {S}}(G_1)\). In this paper, we determine the adjacency spectra, the Laplacian spectra and the signless Laplacian spectra of \(G_1{\dot{\vee }}G_2\) (respectively, \(G_1{\underline{\vee }}G_2\)) for a regular graph \(G_1\) and an arbitrary graph \(G_2\), in terms of the corresponding spectra of \(G_1\) and \(G_2\). As applications, these results enable us to construct infinitely many pairs of cospectral graphs. We also give the number of the spanning trees and the Kirchhoff index of \(G_1{\dot{\vee }}G_2\) (respectively, \(G_1{\underline{\vee }}G_2\)) for a regular graph \(G_1\) and an arbitrary graph \(G_2\).


Spectrum Cospectral graphs Subdivision-vertex join Subdivision-edge join Spanning tree Kirchhoff index 

Mathematics Subject Classification




The authors appreciate the anonymous referees for their comments and suggestions.


  1. 1.
    Atajan, T., Yong, X., Inaba, H.: Further analysis of the number of spanning trees in circulant graphs. Discret. Math. 306(22), 2817–2827 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Barik, S., Pati, S., Sarma, B.K.: The spectrum of the corona of two graphs. SIAM J. Discret. Math. 24, 47–56 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Barik, S.: On the Laplacian spectra of graphs with pockets. Linear Multilinear Algebra 56, 481–490 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Bonchev, D., Balaban, A.T., Liu, X., Klein, D.J.: Molecular cyclicity and centricity of polycyclic graphs. I. Cyclicity based on resistance distances or reciprocal distances. Int. J. Quantum Chem. 50, 1–20 (1994)CrossRefGoogle Scholar
  5. 5.
    Brouwer, A.E., Haemers, W.H.: Spectra of Graphs. Springer, New York (2012)CrossRefzbMATHGoogle Scholar
  6. 6.
    Cui, S.-Y., Tian, G.-X.: The spectrum and the signless Laplacian spectrum of coronae. Linear Algebra Appl. 437, 1692–1703 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Cvetković, D.M., Doob, M., Sachs, H.: Spectra of Graphs—Theory and Applications, 3rd edn. Johann Ambrosius Barth, Heidelberg (1995)zbMATHGoogle Scholar
  8. 8.
    Cvetković, D.M., Rowlinson, P., Simić, H.: An Introduction to the Theory of Graph Spectra. Cambridge University Press, Cambridge (2010)zbMATHGoogle Scholar
  9. 9.
    Gao, X., Luo, Y., Liu, W.: Kirchhoff index in line, subdivision and total graphs of a regular graph. Discret. Appl. Math. 160, 560–565 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Gopalapillai, I.: The spectrum of neighborhood corona of graphs. Kragujevac J. Math. 35, 493–500 (2011)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Gutman, I., Mohar, B.: The quasi-Wiener and the Kirchhoff indices coincide. J. Chem. Inf. Comput. Sci. 36, 982–985 (1996)CrossRefGoogle Scholar
  12. 12.
    Haemers, W.H., Liu, X., Zhang, Y.: Spectral characterizations of lollipop graphs. Linear Algebra Appl. 428, 2415–2423 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Hou, Y., Shiu, W.-C.: The spectrum of the edge corona of two graphs. Electron. J. Linear Algebra 20, 586–594 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Indulal, G.: Spectrum of two new joins of graphs and infinite families of integral graphs. Kragujevac J. Math. 36, 133–139 (2012)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Ilić, A.: The energy of unitary Cayley graphs. Linear Algebra Appl. 431, 1881–1889 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Ilić, A., Bašić, M.: New results on the energy of integral circulant graphs. Appl. Math. Comput. 218, 3470–3482 (2011)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Klein, D.J., Randić, M.: Resistance distance. J. Math. Chem. 12, 81–95 (1993)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Lan, J., Zhou, B.: Spectra of graph operations based on \(R\)-graph. Linear Multilinear Algebra 63(7), 1401–1422 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Li, X., Shi, Y., Gutman, I.: Graph Energy. Springer-Verlag, New York (2012)CrossRefzbMATHGoogle Scholar
  20. 20.
    Liu, X., Lu, P.: Spectra of subdivision-vertex and subdivision-edge neighbourhood coronae. Linear Algebra Appl. 438, 3547–3559 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Liu, X., Wang, S., Zhang, Y., Yong, X.: On the spectral characterization of some unicyclic graphs. Discret. Math. 311, 2317–2336 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Liu, X., Zhou, S.: Spectral properties of unitary Cayley graphs of finite commutative rings. Electron. J. Comb. 19(4), P13 (2012)MathSciNetzbMATHGoogle Scholar
  23. 23.
    Liu, X., Zhou, S.: Spectra of the neighbourhood corona of two graphs. Linear Multilinear Algebra 62(9), 1205–1219 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Liu, X., Zhou, S.: Spectral characterizations of propeller graphs. Electron. J. Linear Algebra 27, 19–38 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    McLeman, C., McNicholas, E.: Spectra of coronae. Linear Algebra Appl. 435, 998–1007 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Nath, M., Paul, S.: On the spectra of graphs with edge-pockets. Linear Multilinear Algebra 63(3), 509–522 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Ozeki, K., Yamashita, T.: Spanning trees: a survey. Graphs Comb. 27(1), 1–26 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Wang, S., Zhou, B.: The signless Laplacian spectra of the corona and edge corona of two graphs. Linear Multilinear Algebra 61(2), 197–204 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Wang, W., Yang, D., Luo, Y.: The Laplacian polynomial and Kirchhoff index of graphs derived from regular graphs. Discret. Appl. Math. 161(18), 3063–3071 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Xu, H.: The Laplacian spectrum and Kirchhoff index of product and lexicographic product of graphs. J. Xiamen Univ. (Nat. Sci.) 42, 552–554 (2003). (in Chinese)zbMATHGoogle Scholar
  31. 31.
    Zhang, F.: The Schur Complement and Its Applications. Springer, New York (2005)CrossRefzbMATHGoogle Scholar
  32. 32.
    Zhang, H., Yang, Y., Li, C.: Kirchhoff index of composite graphs. Discret. Appl. Math. 157, 2918–2927 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Zhang, Y., Liu, X., Zhang, B., Yong, X.: The lollipop graph is determined by its \(Q\)-spectrum. Discret. Math. 309, 3364–3369 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Zhang, Y., Yong, X., Golin, M.J.: The number of spanning trees in circulant graphs. Discret. Math. 223(1), 337–350 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Zhang, Y., Yong, X., Golin, M.J.: Chebyshev polynomials and spanning tree formulas for circulant and related graphs. Discret. Math. 298(1), 334–364 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Zhu, H.-Y., Klein, D.J., Lukovits, I.: Extensions of the Wiener number. J. Chem. Inf. Comput. Sci. 36(3), 420–428 (1996)CrossRefGoogle Scholar

Copyright information

© Malaysian Mathematical Sciences Society and Penerbit Universiti Sains Malaysia 2017

Authors and Affiliations

  1. 1.Department of Applied MathematicsNorthwestern Polytechnical UniversityXi’anPeople’s Republic of China
  2. 2.Department of Mathematics and StatisticsThe University of MelbourneParkvilleAustralia

Personalised recommendations