Skip to main content
Log in

Solutions for a Variable Exponent Neumann Boundary Value Problems with Hardy Critical Exponent

  • Published:
Bulletin of the Malaysian Mathematical Sciences Society Aims and scope Submit manuscript

Abstract

In this paper, we deal with the existence of solutions for the following variable exponent system Neumann boundary value problem with Hardy critical exponent and approximate Sobolev critical growth condition

$$\begin{aligned} \left\{ \begin{array}{l@{\quad }l} -\text {div}(\left| \nabla u\right| ^{p(x)-2}\nabla u)+a(x)\left| u\right| ^{p(x)-2}u=F_{u}(x,u,v)\text {}&{} \text { in }\Omega , \\ -\text {div}(\left| \nabla v\right| ^{q(x)-2}\nabla v)+b(x)\left| v\right| ^{q(x)-2}v=F_{v}(x,u,v)\text {}&{} \text { in }\Omega , \\ \frac{\partial u}{\partial \gamma }=0=\frac{\partial v}{\partial \gamma } \text {}\left. {}\right. &{}\text { on }\partial \Omega . \end{array} \right. \end{aligned}$$

We give several sufficient conditions for the existence of solutions, when \( F(x,\cdot ,\cdot )\) satisfies sub-(\(p(x),q(x)\)) growth condition, or super-(\( p(x),q(x)\)) growth condition and approximate Sobolev critical growth condition. Especially, we obtain the existence of infinitely many solutions, when \(F(x,\cdot ,v)\) satisfies sub-\(p(x)\) growth condition, and \(F(x,u,\cdot )\) satisfies super-\(q(x)\) growth condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Acerbi, E., Mingione, G.: Regularity results for a class of functionals with nonstandard growth. Arch. Ration. Mech. Anal. 156, 121–140 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  2. Chen, Y., Levine, S., Rao, M.: Variable exponent, linear growth functionals in image restoration. SIAM J. Appl. Math. 66(4), 1383–1406 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  3. Růžička, M.: Electrorheological fluids: modeling and mathematical theory. Lecture Notes in Math. Springer, Berlin (2000)

    Google Scholar 

  4. Zhikov, V.V.: Averaging of functionals of the calculus of variations and elasticity theory. Math. USSR. Izv. 29, 33–36 (1987)

    Article  MATH  Google Scholar 

  5. Guo, Z.C., Sun, J.B., Zhang, D.Z., Wu, B.Y.: Adaptive perona-malik model based on the variable exponent for image denoising. IEEE Trans. Image Process 21, 958–967 (2012)

    Article  MathSciNet  Google Scholar 

  6. Guo, Z.C., Liu, Q., Sun, J.B., Wu, B.Y.: Reaction-diffusion systems with \(p(x)\)-growth for image denoising. Nonlinear Anal-Real. 12, 2904–2918 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  7. Harjulehto, P., Hästö, P., Latvala, V., Toivanen, O.: Critical variable exponent functionals in image restoration. Appl. Math. Lett. 26, 56–60 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  8. Li, F., Li, Z.B., Pi, L.: Variable exponent functionals in image restoration. Appl. Math. Comput. 216, 870–882 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  9. Acerbi, E., Mingione, G.: Gradient estimates for the \(p(x)\) -Laplacean system. J. Reine Angew. Math. 584, 117–148 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  10. Ala, S., Afrouzi, G., Zhang, Q., Niknam, A.: Existence of positive solutions for variable exponent elliptic systems. Bound. Value Probl. 37, 1–12 (2012)

    MathSciNet  Google Scholar 

  11. Afrouzi, G.A., Chung, N.T., Mahdavi, S.: Existence and multiplicity of solutions for anisotropic elliptic systems with non-standard growth conditions. Electron. J. Differ. Equ. 32, 1–15 (2012)

    MathSciNet  Google Scholar 

  12. Alves, C.O.: Existence of solution for a degenerate \(p(x)\) -Laplacian equation in \( \mathbb{R} ^{N}\). J. Math. Anal. Appl. 345, 731–742 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  13. Almeida, A., Hästö, P.: Besov spaces with variable smoothness and integrability. J. Funct. Anal. 258(5), 1628–1655 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  14. Antontsev, S., Shmarev, S.: Elliptic equations and systems with nonstanded growth conditions: existence, uniqueness and localization properties of solutions. Nonlinear Anal. 65(4), 728–761 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  15. Coscia, A., Mingione, G.: Hölder continuity of the gradient of \(p(x)\)-harmonic mappings. Comptes Rendus de l’Académie des Sciences - Ser. I - Mathematics 328, 363–368 (1999)

    MATH  MathSciNet  Google Scholar 

  16. Diening, L., Harjulehto, P., Hästö, P., Růži čka, M.: Lebesgue and Sobolev spaces with variable exponents, lecture notes in mathematics. Springer, Berlin (2011)

    Book  Google Scholar 

  17. Fan, X.L., Zhao, D.: On the spaces \(L^{p(x)}\left(\Omega \right) \) and \(W^{m, p(x)}\left(\Omega \right) \). J. Math. Anal. Appl. 263, 424–446 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  18. Fan, X.L.: Global \(C^{1,\alpha }\) regularity for variable exponent elliptic equations in divergence form. J. Differ. Equ. 235, 397–417 (2007)

    Article  MATH  Google Scholar 

  19. Fan, X.L.: On the sub-supersolution method for \(p(x)\)-Laplacian equations. J. Math. Anal. Appl. 330, 665–682 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  20. Fan, X.L., Zhang, Q.H.: Existence of solutions for \(p(x)\) -Laplacian Dirichlet problem. Nonlinear Anal. 52, 1843–1852 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  21. Fan, X.L., Zhang, Q.H., Zhao, D.: Eigenvalues of \( p(x)\)-Laplacian Dirichlet problem. J. Math. Anal. Appl. 302, 306–317 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  22. Fan, X.L.: Solutions for \(p(x)\)-Laplacian Dirichlet problems with singular coefficients. J. Math. Anal. Appl. 312, 464–477 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  23. Fan, X.L., Shen, J.S., Zhao, D.: Sobolev embedding theorems for spaces \(W^{k, p(x)}(\Omega )\). J. Math. Anal. Appl. 262, 749–760 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  24. Fu, Y.Q.: The principle of concentration compactness in \( L^{p(x)} \) spaces and its application. Nonlinear Anal. 71(5–6), 1876–1892 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  25. Fu, Y.Q., Zhang, X.: Multiple solutions for a class of \(p(x)\) -Laplacian equations in \( \mathbb{R} ^{N}\) involving the critical exponent. Proc. R. Soc. Edinb. A 466, 1667–1686 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  26. El Hamidi, A.: Existence results to elliptic systems with nonstandard growth conditions. J. Math. Anal. Appl. 300, 30–42 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  27. Harjulehto, P., Hästö, P., Koskenoja, M., Varonen, S.: The Dirichlet energy integral and variable exponent Sobolev spaces with zero boundary values. Potential Anal. 25, 205–222 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  28. Harjulehto, P., Hästö, P., Latvala, V.: Harnack’s inequality for \(p(\cdot )\)-harmonic functions with unbounded exponent \(p\). J. Math. Anal. Appl. 352(1), 345–359 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  29. Kováčik, O., Rákosník, J.: On spaces \( L^{p(x)}\left(\Omega \right) \) and \(W^{k, p(x)}\left(\Omega \right) \). Czechoslovak Math. J. 41, 592–618 (1991)

    MathSciNet  Google Scholar 

  30. Lukkari, T.: Singular solutions of elliptic equations with nonstandard growth. Math. Nachr. 282(12), 1770–1787 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  31. Marcellini, P.: Regularity and existence of solutions of elliptic equations with \((p.q)\)-growth conditions. J. Differ. Equ. 90, 1–30 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  32. Mihăilescu, M., Rădulescu, V., Repovš, D.: On a non-homogeneous eigenvalue problem involving a potential: an Orlicz-Sobolev space setting. J. Math. Pures Appl. 93(2), 132–148 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  33. Mihăilescu, M., Moroşanu, G., Stancu-Dumitru, D.: Equations involving a variable exponent Grushin-type operator. Nonlinearity 24, 2663–2680 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  34. Mihăilescu, M., Rădulescu, V.: Continuous spectrum for a class of nonhomogeneous differential operators. Manuscr. Math. 125, 157–167 (2008)

    Article  MATH  Google Scholar 

  35. Nakai, E., Sawano, Y.: Hardy spaces with variable exponents and generalized Campanato spaces. J. Funct. Anal. 262, 3665–3748 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  36. Samko, S.G.: Densness of \(C_{0}^{\infty }(\mathbb{R} ^{N})\) in the generalized Sobolev spaces \(W^{m, p(x)}(\mathbb{R} ^{N})\). Dokl. Ross. Akad. Nauk 369(4), 451–454 (1999)

    MathSciNet  Google Scholar 

  37. Stancu-Dumitru, D.: Two nontrivial solutions for a class of anisotropic variable exponent problems. Taiwan. J. Math. 16(4), 1205–1219 (2012)

    MATH  MathSciNet  Google Scholar 

  38. Stancu-Dumitru, D.: Multiplicity of solutions for a nonlinear degenerate problem in anisotropic variable exponent spaces. Bull. Malays. Math. Sci. Soc. (2) 36(1), 117–130 (2013)

    MATH  MathSciNet  Google Scholar 

  39. Xu, X.C., An, Y.K.: Existence and multiplicity of solutions for elliptic systems with nonstandard growth condition in \( \mathbb{R} ^{N}\). Nonlinear Anal. 68, 956–968 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  40. Zhang, Q.H.: Existence of solutions for weighted \(p(r)\) -Laplacian system boundary value problems. J. Math. Anal. Appl. 327, 127–141 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  41. Zhang, Q.H.: Existence of radial solutions for \(p(x)\)-Laplacian equations in \( \mathbb{R} ^{N}\). J. Math. Anal. Appl. 315(2), 506–516 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  42. Zhang, Q.H.: Existence and asymptotic behavior of positive solutions for variable exponent elliptic systems. Nonlinear Anal. 70(1), 305–316 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  43. Zhang, Q.H.: A strong maximum principle for differential equations with nonstandard \(p(x)\)-growth conditions. J. Math. Anal. Appl. 312(1), 24–32 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  44. Zhang, Q.H., Liu, X.P., Qiu, Z.M.: On the boundary blow-up solutions of \(p(x)\)-Laplacian equations with singular coefficient. Nonlinear Anal. 70(11), 4053–4070 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  45. Zhang, Q.H.: Existence of positive solutions to a class of \(p(x)\) -Laplacian equations with singular nonlinearities. Appl. Math. Lett. 25, 2381–2384 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  46. Zhikov, V.V.: Existence theorem for some pairs of coupled elliptic equations. Doklady Math. 77(1), 80–84 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  47. Catrina, F., Wang, Z.Q.: On the Caffarelli-Kohn-Nirenberg inequalities: sharp constants, existence (and nonexistence) and symmetry of extremal functions. Commun. Pure Appl. Math. 54(2), 229–258 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  48. Ekeland, I., Ghoussoub, N.: Selected new aspects of the calculus of variations in the large. Bull. Amer. Math. Soc. 39, 207–265 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  49. Garcia Azorero, J.P., Peral Alonso, I.: Hardy inequalities and some critical elliptic and parabolic problems. J. Differ. Equ. 144, 441–476 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  50. Ghoussoub, N., Yuan, C.: Multiple solutions for quasi-linear PDEs involving the critical Sobolev and Hardy exponents. Trans. Am. Math. Soc. 12, 5703–5743 (2000)

    Article  MathSciNet  Google Scholar 

  51. Chang, K.C.: Critical point theory and applications. Shanghai Scientific and Technology press, Shanghai (1986)

    MATH  Google Scholar 

  52. Struwe, M.: Variational methods, applications to nonlinear partial differential equations and Hamiltonian systems. Springer, Berlin (1990)

    MATH  Google Scholar 

  53. Willem, M.: Minimax Theorems. Birkhäuser, Boston (1996)

    Book  MATH  Google Scholar 

Download references

Acknowledgments

Foundation item: Partly supported by the key projects of Science and Technology Research of the Henan Education Department (14A110011) and the National Natural Science Foundation of China (11326161 and 10971087).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qihu Zhang.

Additional information

Dedicated to Professor Xianling Fan on his 70th birthday.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhi, G., Zhang, Q. Solutions for a Variable Exponent Neumann Boundary Value Problems with Hardy Critical Exponent. Bull. Malays. Math. Sci. Soc. 38, 571–603 (2015). https://doi.org/10.1007/s40840-014-0037-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40840-014-0037-5

Keywords

Navigation