Advertisement

Stabilization of Stainless Steel Slag via Air Granulation

  • Mikael Lindvall
  • Lily Lai Chi SoEmail author
  • Mahdi Mahdi
  • Janice Bolen
  • Johannes Nell
  • Isabelle Nolet
  • Darryl Metcalfe
  • Sina Mostaghel
  • Olle Sundqvist
Research Article

Abstract

In stainless steel production, slag from argon oxygen decarburization (AOD) converters is dumped on to the ground and then slowly cooled. The slag undergoes phase transformation from β-dicalcium silicate (β-C2S) to γ-dicalcium silicate (γ-C2S) at approximately 500 °C to 450 °C, resulting in slag volume expansion, disintegration, and dust generation. The dusty slag leads to challenges in material handling, metals recovery, and emissions control. Some operations use slag additives to stabilize slag, but this solution is expensive and can limit the end use of slag due to inclusion of toxic elements. Air granulation was hypothesized as a water-free method for stabilizing AOD slag via rapid quenching. Pilot-scale experiments at Sandvik Materials Technology (SMT) with silicon-reduced AOD slags confirmed that air granulation can produce products which are stable and dust free. Mineralogical analyses further indicated that these air-granulated stainless slags contained either no or low content of γ-C2S and are therefore stable.

Keywords

Slag Stainless Argon oxygen decarburization Dry granulation 

Notes

Acknowledgement

The authors would like to thank Magnus Eriksson of Harsco and Lennart Johansson of SMT for their support during the execution of the trials. Fredrik Engström of LTU is gratefully acknowledged for support with XRD analysis.

Conflict of interest

The authors Lily Lai Chi So, Mahdi Mahdi, Janice Bolen, Johannes Nell, Isabelle Nolet, and Darryl Metcalfe, declare that there are also no conflicts of interest. The authors disclose their employment with Hatch Ltd., a worldwide leading consulting company which provides a wide range of technology-agnostic studies and engineering services, as demonstrated in their execution of a front-end-loaded engineering approach that often involves scaled testing and various studies to first establish project feasibility, taking into consideration various technology solutions, before making recommendations for full-scale implementation. Air granulation, the subject matter discussed in this paper, is one of various technology solutions being studied and recommended by Hatch Ltd. for slag-handling practices.

References

  1. 1.
    Chan CJ, Young JF (1992) Physical stabilization of the beta to gamma transformation in dicalcium silicate. J Am Ceram Soc.  https://doi.org/10.1111/j.1151-2916.1992.tb04234.x Google Scholar
  2. 2.
    Kim YJ, Nettleship I, Kriven WM (1992) Phase transformations in dicalcium silicate: II, TEM studies of crystallography, microstructure, and mechanisms. J Am Ceram Soc.  https://doi.org/10.1111/j.1151-2916.1992.tb05593.x Google Scholar
  3. 3.
    Serjun VZ, Mirtic B, Mladenovic A (2013) Evaluation of Ladle slag as a potential material for building and civil engineering. Mater Technol 47(5):543–550Google Scholar
  4. 4.
    Huang S, Guo M, Jones PT, and Blanpain B (2013) Fayalite slag modified stainless steel AOD slag. In: Proceedings of the Third International Slag Valorisation Symposium, pp. 107–110.Google Scholar
  5. 5.
    Pontikes Y, Geysen D (2010) Options to prevent dicalcium silicate-driven disintegration of stainless steel slags. Arch Metall Mater.  https://doi.org/10.2478/v10172-010-0020-6 Google Scholar
  6. 6.
    Durinck D, Arnout S, Jones PT, Blanpain B, and Wollants P (2008) Borate stabilization of air-cooled slags. GlobalSlag. https://www.globalslag.com/magazine/articles/456-borate-stabilisation-of-air-cooled-slags. Accessed 24 July 2018.
  7. 7.
    Pontikes Y, Kriskova L, Wang X, Geysen D, Arnout S, Nagels E. Cizer, O, Van Gerven T, Elsen J, Guo M, Jones, P.T., and Blanpain B (2011) Additions of industrial residues for hot stage engineering of stainless steel slags. In: Proceedings of the Second International Slag Valorisation Symposium, pp. 313–326.Google Scholar
  8. 8.
    Engstrom F, Pontikes Y, Geysen D, Jones PT, Bjorkman B, and Blanpain B (2011) Review: Hot stage engineering to improve slag valorisation options. Proceedings of the Second International Slag Valorisation Symposium, pp 231-251.Google Scholar
  9. 9.
    Kriskova L, Pontikes Y, Pandelaers L, Cizer O, Jones PT, Van Balen K, Blanpain B (2013) Effect of high cooling rates on the minerology and hydraulic properties of stainless steel slags. Metall Mater Trans B.  https://doi.org/10.1007/s11663-013-9894-9 Google Scholar
  10. 10.
    Barati M, Esfahani S, Utigard TA (2011) Energy recovery from high temperature slags. Energy.  https://doi.org/10.1016/j.energy.2011.07.007 Google Scholar
  11. 11.
    Gajda K, Baunea M, Thöminga J (2017) Recycling options for steel working slag and upcycling perspectives. Procedia Manuf 8:643–648CrossRefGoogle Scholar
  12. 12.
    Lindvall M, Nordberg LO, Stenberg A, Orrling D (2015) SWEREA MEFOS experiences on dry blast furnace slag granulation. In: Proceedings of the 4th International Slag Valorisation Symposium, pp 57–61.Google Scholar
  13. 13.
    Ando J, Nakahara T, Onoue H, Ichimura S, and Kondo M (1985) Development of slag blast granulation plant characterized by innovation of the slag treatment method, heat recovery, and recovery of slag as resources. Mitsubishi Heavy Industries, Ltd. Technical Review, pp 136–142Google Scholar
  14. 14.
    Bolen J, Mostaghel S, So L, and Faucher S (2017) Technical and environmental benefits for dry atomization of stainless steel and ladle metallurgy slags. In: Proceedings for the 2017 Iron & Steel Technology Conference and Exposition, pp 149-156.Google Scholar
  15. 15.
    Hannemann F, Bradfield M, Mahdi M, So L, Metcalfe D (2018) Impact of air granulation on the ferrochrome value chain in metallurgical smelter complexes. J S Afr Inst Min Metall.  https://doi.org/10.17159/2411-9717/2018/v118n6a10 Google Scholar
  16. 16.
    Kappes H and Michels D (2015) Dry slag granulation and energy recovery. In: Proceedings of the Fourth International Slag Valorisation Symposium, pp 39–52.Google Scholar
  17. 17.
    Jahanshahi S and Xie D (2012) Current status and future direction of CSIRO's dry slag granulation process with waste heat recovery. In: Proceedings for the 5th International Congress on the Science and Technology of Steelmaking 2012 (ICS 2012); CD ROM.Google Scholar
  18. 18.
    Xie D, Pan Y, Flann R, Washington B, Sanetsis S, and Donnelley J (2007) Heat recovery from slag from dry granulation. First Centre for Sustainable Resource Processing Annual Conference, pp 29–30.Google Scholar
  19. 19.
    Yu PF, Wang SZ (2017) Industrialization mode for energy recovery using dry centrifugal granulation process. Key Eng Mater 719:104–108CrossRefGoogle Scholar
  20. 20.
    McDonald IJ and Werner A (2015) Dry granulation with heat recovery. In: Proceedings of the 45th Ironmaking & Mineral Technology Seminar, pp 286–295.Google Scholar
  21. 21.
    Fleischander A, Fenzl T, and Neuhold R (2018) Dry slag granulation—the future way to granulate blast furnace slag. In: Proceedings of the 2018 Iron & Steel Technology Conference and Exposition, pp 87–94.Google Scholar
  22. 22.
    Björkman B, Engström F, Larsson M, Yang Q, Ye G, Lindvall M, Hasse B, Roininen J (2012) Stabilization and reuse of AOD-, EAF-, and ladle slag (88033), The Steel Eco-Cycle Scientific Final Report, pp 173–182. https://www.jernkontoret.se/globalassets/publicerat/forskning/d-rapporter/d-853_webb.pdf. Accessed 25 Sept 2018.
  23. 23.
    Mostaghel S, Matsushita T, Samuelsson C, Bjorkman B, Seetharaman S (2013) Influence of alumina on physical properties of an industrial zinc-copper smelting slag. Part 1—viscosity. Mineral processing and extractive metallurgy (transactions of the mining and metallurgy: section C). https://doi.org/10.1179/1743285512Y.0000000029
  24. 24.
    Mostaghel S, Matsushita T, Samuelsson C, Bjorkman B, Seetharaman S (2013) Influence of alumina on physical properties of an industrial zinc-copper smelting slag. Part 2—apparent density, surface tension and effective thermal diffusivity. Mineral processing and extractive metallurgy (transactions of the mining and metallurgy: section C). https://doi.org/10.1179/1743285512Y.0000000015
  25. 25.
    Mostaghel S, Matsushita T, Samuelsson C, Bjorkman B, Seetharaman S (2013) Influence of alumina on physical properties of an industrial zinc-copper smelting slag. Part 3—melting behaviour. mineral processing and extractive metallurgy (transactions of the mining and metallurgy: section C). https://doi.org/10.1179/1743285512Y.0000000028
  26. 26.
    Mostaghel S, Samuelsson C, Bjorkman B (2013) Influence of alumina on mineralogy and environmental properties of zinc-copper smelting slags. Int J Miner, Metall Mater.  https://doi.org/10.1007/s12613-013-0718-3 Google Scholar
  27. 27.
    Wu L, Ek M, Song M, Sichen D (2011) The effect of solid particles on liquid viscosity. Steel Res Int.  https://doi.org/10.1002/srin.201000207 Google Scholar
  28. 28.
    Eriksson J and Bjorkman B (2004) MgO modification of slag from stainless steelmaking. In: Proceedings of the VII International Conference on Molten Slags Fluxes and Salts, pp 455–460.Google Scholar
  29. 29.
    Jalkina G, Teng L, Bjorkman B, Seetharaman S (2013) Effect of low oxygen partial pressure on the chromium partition in CaO-MgO-SiO2-Cr2O3-Al2O3 synthetic slag at elevated temperatures. Steel Res Int.  https://doi.org/10.1002/srin.201200214 Google Scholar
  30. 30.
    Ylipekkala J (2005) Quality management of chromium containing steel slags from melt phase to cooling. (Master’s Thesis). Lulea University of Technology, Lulea, Sweden.Google Scholar
  31. 31.
    Levin EM, Robbins CR, McMurdie HF (1964) Phase diagrams for ceramists. The American Ceramic Society, ColumbusGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.SWERIM ABLuleåSweden
  2. 2.Hatch LtdMississaugaCanada
  3. 3.Aurubis AGHamburgGermany
  4. 4.AB Sandvik Materials TechnologySandvikenSweden

Personalised recommendations